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a b s t r a c t

A method for calculating micromagnetic state of ferro- or ferrimagnetic single-crystals based on the
Néel's method of phases is proposed. The standard Néel technique requires different approaches to
calculation of micromagnetic state of samples with different anisotropy types. Furthermore, this tech-
nique cannot be used to calculate magnetization curves of materials with a complex anisotropy type, in
which the first-order magnetization process (FOMP) occurs. On the contrary, the technique proposed in
the present work makes it possible to calculate micromagnetic state of a sample within one unified
approach. This technique has no limitations in terms of the anisotropy type as well. In case of the FOMP,
the simulation methods that we used show results different from conventional calculation methods. The
reason is that the conventional methods imply coherent rotation of magnetization in single domain
particle (so-called Stoner–Wohlfarth model). We explain this discrepancy by the fact that a magnetic
domain structure appears in the region of the FOMP. In the present work we show that magnetization
processes do not occur in a jump under the FOMP but gradually pass though nucleation and new high-
field phase growing, which substitutes for the low-field phase.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic anisotropy constants K1,K2,…Kn of a ferro- or ferri-
magnet can be found from experimental magnetization curve Iexp
(H) measured along various crystallographic directions. This
method is based on the approximation of Iexp(H) by a calculated
dependence Icalc(H,Is,K1,K2,…Kn), where K1,K2,…Kn are fit para-
meters. The K1,K2,…Kn values, which provide the best fit, are
considered to be experimentally obtained anisotropy constants.
From this point of view, it is very important to use a relevant
model reflecting real magnetization processes for
Icalc(H,Is,K1,K2,..Kn).

The commonly used methods of calculating Icalc(H,Is,K1,K2,…Kn)
are based on the Stoner–Wohlfarth model [1]. These methods
imply a coherent magnetization rotation in a single domain par-
ticle. In this case Icalc(H,Is,K1,K2,…Kn) is simulated by the rotation of

spontaneous magnetization Is under the applied external magnetic
field H [1,2]. As we imply that the sample is in single-domain state,
the magnetization value I is the projection of Is onto the direction
of the external magnetic field H. The angle between the external
field H and the vector Is can be found by minimizing the total
energy, which consists of the anisotropy energy and the energy of
a magnetic moment in an external magnetic field. The advantage
of this technique is its simplicity.

On the contrary, the Néel's method of Icalc(H,Is,K1,K2,…Kn) si-
mulation is based on the assumption that a sample can be sub-
divided into magnetic domains in low magnetic fields. Thus, the
total energy should include the demagnetizing field energy of a
specimen, the anisotropy energy and the magnetic moment en-
ergy in the external magnetic field. In this case, all the domains
contribute to the projection of the net magnetization onto the
external field direction. The advantage of the Néel's method is that
it gives a more detailed description of magnetization processes [3–
5].

In this work we show that both simulation methods lead to
identical magnetization curves for the ‘regular’ anisotropy types,
such as ‘easy axis,’ ‘easy cone,’ and ‘easy plane.’ However, in the
event of an additional metastable minimum of anisotropy energy,
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which, in turn, shows up as the first order magnetization process
(FOMP), these simulation methods show different results. We
explain this discrepancy by the fact that a magnetic domain-like
structure appears in the region of the FOMP-transition.

2. Methods

During the study of the first order magnetization process
(FOMP), the method for calculating magnetization curves with the
assumption that the sample is in a single-domain state is typically
used for analyzing the results of magnetic measurements. In this
case, magnetization vector projection on the coordinate axes can
be written as:
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plane xOz (see Fig. 1a). Taking into account the anisotropy energy
(the present work uses a tetragonal magnetic as the example) and
the energy in the external magnetic field only, the crystal energy
density can be written as
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where Θ and Φ are polar and azimuthal angles defining the ex-
ternal magnetic field direction in relation to the coordinate axes
(see Fig. 1a); K1, K2, and K3 are anisotropy constants; and IS is the
saturation magnetization. To find the magnetization projection
using expression (1), we need to find such values for ϕ and θ when
E ,ϕ θ( ) is minimal.

This approach was suggested by Asti to analyze field-induced
FOMP phase transitions [2] (in the event of two dimensions). On
one hand, this method does not take into account the presence of
a domain structure in a sample. On the other hand, taking into
account the influence of domain structure transformations in an
external field on magnetization reversal processes can provide
additional information on the material's characteristics in the
event of magnetic phase transitions.

To calculate the micro-magnetic state of ferro- and ferrimag-
netic single crystals, the present work uses the method based on
the Néel's theory of phases [3–5], taking into account the speci-
men's domain structure. Unlike the standard Néel's method, which
requires different approaches to calculating micromagnetic state
of a sample for different anisotropy types and is not applicable to
calculating magnetization curves for a ferromagnetic with a
complex anisotropy type (‘easy planeþmetastable easy axis’ or
‘easy axisþmetastable easy plane’), the method suggested in the
present work allows us to calculate the micromagnetic state of a
sample for any type of the magnetic anisotropy.

The Néel's method is based on the following assumptions:

1. In the absence of a magnetic field, the sample is broken down
into magnetic domains. The domains with the same direction of
magnetization (or domains of the same sign) comprise a
“phase.” In the external field magnetization occurs due to the
magnetization vector rotation as well as due to the domain wall
motion.

2. When the value and/or direction of the magnetic field are
changed, the volumetric densities of the energy of different
domains change as well. Due to both magnetization processes—
the rotations and domain wall motions—the magnetic domains
configuration starts changing in order to reach equal energy
densities of different “phases.” The influence of domain walls is
neglected.

3. The volumetric density of the sample’s energy is comprised of
the volumetric energy densities of anisotropy EA, the energy in
the external field EH, and the energy of the demagnetization

Fig. 1. Magnetization and external magnetic field for both models (a) Stoner–Wohlfarth; (b) Néel's model. The case of uniaxial magnetic anisotropy. ϕ is the angle between
the magnetization vector and с axis of the crystal; angle θ is the angle between vector Is

→
and plane xOz. Θ; and Φ are polar and azimuthal angles defining the direction of the

external magnetic field.
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