
Disorder enhanced conductance in graphene

Yi-Xiang Wang n, Ya-Min Wu
School of Science, Jiangnan University, Wuxi 214122, China

a r t i c l e i n f o

Article history:
Received 2 June 2015
Received in revised form
9 August 2015
Accepted 25 August 2015
Available online 28 August 2015

Keywords:
Disorder
Transport property
Graphene

a b s t r a c t

We study the effect of short-range disorder on the localization property of the electronic state in zigzag
graphene, via the calculation of the two-terminal dc conductance with the transfer matrix method.
When the disorder is weak, the electron states are localized. However, when the disorder crosses the
critical strength, the conductance will be enhanced and may be even quantized as e h/2 at the specific
disorder strength. Our numerical calculations suggest that the quantized conductance shows certain
robustness to the system size, shape and the Fermi energy. We demonstrate the unconventional behavior
from the localization length and the density of states and attribute it to the existence of edge states. The
implications of our results are discussed.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Disorder plays an important role in determining the transport
property in two-dimensional (2D) electron gas, and is responsible
for striking phenomena such as the metal–insulator transition [1].
A milestone in condensed matter physics is the one-parameter
scaling theory, which demonstrates that in a non-interacting 2D
electron system, the arbitrarily weak disorder can drive them to be
insulator [2]. However, when the external magnetic field or the
spin–orbit coupling exists, the scaling theory seems to be invalid.
The application of the magnetic field to 2D electron gas breaks the
time-reversal symmetry (TRS) of the system and can create the
dissipationless edge state, leading to the remarkable phenomenon
of the integer quantum Hall effect (QHE) [3]. While the spin–orbit
coupling plays a crucial role in driving the quantum spin Hall ef-
fect (QSHE) [4,5]. In these two cases, the edge states are robust to
the disorder.

Since the discovery of graphene, its fascinating electronic
transport property has been the focus of intense experimental and
theoretical investigations over the recent years [6–10]. The influ-
ence of disorder on the transport property in graphene has also
attracted a lot of studies [11–17], but no consensus has achieved
yet [18]. In Ref. [13], it was argued that the transport properties in
graphene are dominated by diffusion due to disorder. In Ref. [17],
the authors suggest when the nondiagonal hopping integral dis-
order exists, the electronic states at the Dirac points will be de-
localized. The recent studies show that disorder can lead to the
increase of conductance due to the competition between the

increase of carrier density and the simultaneous increase of scat-
tering events between the electrons [19,20].

The theoretical treatment of disorder in graphene requires to
introduce the specific model of disorder, such as the short-range
and the long-range disorder. The short-range disorder can cause
the inter-valley scattering and lead to the Anderson localization
[17,21], while the long-range disorder only induces the intra-valley
scattering and preserves the relativistic nature of electrons, which
will induce the anti-localization behavior [22,23]. However, there
are less studies about the electron transport when both the dis-
order and edge states exist in the system [24].

In this work, we try to study the influence of short-range dis-
order on the two-terminal dc conductance in zigzag graphene
which owns the edge states with the powerful transfer matrix
method. We will focus our study on the diffusive regime, which is
defined in systems with short-range disorder when the localiza-
tion length (LL) is larger than the size of the system [25]. We find
that when the disorder is weak, the electron states are localized
which is consistent with previous studies. Surprisingly, when the
disorder is further increased and crossing the critical point, the
conductance will be enhanced by disorder and even quantized as
e h/2 at the specific disorder strength. The quantized conductance
shows certain robustness to the system size, shape and the low
Fermi energy. We demonstrate this by calculating the LL and the
density of states (DOS) and attribute such unconventional beha-
vior to the fact that more bulk states than edge state participate in
the electron transport as the disorder increases. These results re-
mind us of the numerically found nontrivial phase of the topolo-
gical Anderson insulator (TAI) in HgTe/CdTe quantumwell [26–28]
which is also driven by the short-range disorder.
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2. Model and method

We start from the honeycomb lattice model with the nearest-
neighboring (NN) hopping and short-range disorder simulated by
the on-site potential. The tight-binding Hamiltonian is described
as follows:

H tc c U c c ,
1i j

i j
i

i i i
,

∑ ∑= − +
( )〈 〉

+ +

where ci
+ and ci are the creation and annihilation operators for

spinless electrons, respectively, i j,〈 〉 denotes the NN hopping with
strength t. The second term represents the onsite disorder po-
tential which is uniformly distributed as U W W/2, /2i ∈ [ − ] where
W is the disorder strength. We will set t as the unit of energy. In
Fig. 1(b), the ribbon dispersion (Ly¼60) for the zigzag boundary is
given, where the edge states appear between two Dirac points of
k 2 /3x π= and k 4 /3x π= . The edge states are nearly flat in the vi-
cinity of E¼0 [29], indicating that they are degenerate for the top
and bottom boundaries. The edge states near kx π= are almost
localized on the boundaries completely while those near the Dirac
points are much more spread into the bulk. Note the edge states
here do not share the same features as those in the QSHE, which
can be characterized by the Z2 topological index and is protected
from the TRS [4].

As shown in Fig. 1(a), the graphene ribbon is connected to two
highly doped leads for the calculation of dc conductance. Due to
the zigzag boundary, the column i of honeycomb lattice can be
separated into two sub-columns iα and iβ. When the width of the
system is Ly, the wave functions iΨ α and iΨ β , respectively, for sub-
columns iα and iβ can be written in the site representation as
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where ijA BΨ ( ) is the amplitude of the wave function at sublattice A
(B) of j-th row, i-th column. The transfer matrices Mi1 and Mi2 of
order 2Ly connecting neighboring sub-columns are defined as
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Mi1 and Mi2 can be solved from the Schrödinger equation with
energy E: H Ei iΨ Ψ=α α and H Ei iΨ Ψ=β β . After a straightforward cal-
culation, the transfer matrix has the following block form:
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where ILy and 0Ly are respectively the unit matrix and zero matrix
with order Ly. The submatrices N1 and N2 are
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Note that the disordered onsite energies appearing in the diagonal
terms are different for different sites.

The transfer matrix connecting the wavefunction of neighbor-
ing columns i 1+ and i is M M Mi i i2 1= . So the total transfer matrix
M which relates the wavefunction of column Lx with the first
column is

M M .
7j
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For a finite L Lx y× quasi-one-dimension system, there are Ly
propagating channels along the x direction. The Hermitian matrix
M M L1/2 x( )+ has 2Ly eigenvalues, which should be positive and come
in inverse pairs due to the unitarity of the matrix. The Ly positive
logarithms of the eigenvalues are called the Lyapunov exponents
(LEs) and denoted as L1 2 y

γ γ γ< ⋯ < , which reflect the exponential
decay of the corresponding channels [30]. The logarithms of other
Ly eigenvalues are the negatives of γi. The LL is defined as the re-
ciprocal of the smallest LE 1/ 1λ γ= and plays a crucial rule in the
localization theory. In actual numerical calculations, to avoid the
terrible overflow in multiplying the transfer matrices, we use the
Gram–Schmidt reorthonormalization scheme during the process

Fig. 1. (a) Schematic plot of the graphene system with zigzag boundary and is
connected to two highly doped leads. Column i has been separated as the sub-
columns iα and iβ. (b) Plot of the ribbon spectrum. The width is taken as Ly¼60. The
edge states are shown with dotted (red) lines. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)
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