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a b s t r a c t

We present the results of low lying collective mode of coupled optical cavity arrays. We derive the Dirac
equation for this system and explain the existence of Majorana fermion mode in the system. We present
quite a few analytical relations between the Rabi frequency oscillation and the atom–photon coupling
strength to explain the different physical situation of our study and also the condition for massless
collective mode in the system. We present several analytical relations between the Dirac spinor field,
order and disorder operators for our systems. We also show that the Luttinger liquid physics is one of the
intrinsic concepts in our system.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The recent experimental success in engineering strong inter-
action between the photons and atoms in high quality micro-
cavities opens up the possibility to use light matter system as
quantum simulators for many body physics. Many interesting re-
sults are coming out to understand the complicated quantum
many body system [1–3].

In the present study one of our goal is to predict the presence of
Majorana fermions in our model system. Before we proceed fur-
ther , we would like to describe very briefly about the appearance
of Majorana fermions in quantum condensed matter system. Ma-
jorana had introduced a special kind of fermions which are their
own antiparticle, i.e., the neutral particle [4,5]. He had introduced
this particle to describe neutrions. In recent years, there are sev-
eral candidates of Majorana fermions in quantum condensed
matter system like quantum Hall system with filling fraction 5/2
[6,7]. Kitaev at first found the existence of Majorana fermion mode
in one dimensional model [8]. Many research group have already
been proposed the physically existence of MFs at the edge state of
1D system like electrostatic defects lines in superconductor, quasi-
one dimensional superconductor and cold atom trapped in one
dimension [9,10].

In this research paper, we present an extensive derivation of
Dirac equation and also the existence of Majorana fermions mode
in an optical cavity array. We also present the analytical relation
between the Rabi frequency oscillation and the atom–photon
coupling strengths to mimic the transverse Ising model, Dirac
equation, magnetic ordered state, quantum paramagnetic state
and massless excitation. Quantum state engineering of the optical
cavity array system is in state-of-the-art due to the rapid technical
development of this field [1–3] therefore one can achieve these
quantum phases in the laboratory.

2. The model Hamiltonian and Majorana fermion modes

The Hamiltonian of our present study consists of three parts:

H H H H 1A C AC= + + ( )

The Hamiltonians are the following:

H e e b b
2

A
j

N

e j j ab j j
1

∑ ω ω= | 〉〈 | + | 〉〈 |
( )=

where j is the cavity index. abω and eω are the energies of the state
b| 〉 and the excited state respectively. The energy level of state a| 〉 is
set as zero. a| 〉 and b| 〉 are the two stable state of an atom in the
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cavity and e| 〉 is the excited state of that atom in the same cavity.
The following Hamiltonian describes the photons in the cavity
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where a aj j( )† is the photon creation (annihilation) operator for the
photon field in the jth cavity, ωC is the energy of photons and JC is
the tunneling rate of photons between neighboring cavities. The
interaction between the atoms and the photons and also by the
driving lasers are described by

⎜ ⎟
⎡
⎣
⎢
⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥
⎥H e g a e a h c a b

2
. . .

4
AC

j

N
a i t

a j j j
1

a∑ Ω
= + | 〉〈 | + + [ ↔ ]

( )
ω

=

−

Here ga and gb are the couplings of the cavity mode for the tran-
sition from the energy states a| 〉 and b| 〉 to the excited state.Ωa and
Ωb are the Rabi frequencies of the lasers with frequencies ωa and
ωb respectively.

The authors of Refs. [11–13] have derived an effective spin
model by considering the following physical processes: a virtual
process regarding emission and absorption of photons between
the two stable states of neighboring cavity yields the resulting
effective Hamiltonian as
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When J2 is real then this Hamiltonian reduces to the XY model.
Where b b a aj

z
j j j jσ = | 〉〈 | − | 〉〈 |, b aj j jσ = | 〉〈 |+ , a bj j jσ = | 〉〈 |− .
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With J J Jx 1 2= ( + ) and J J Jy 1 2= ( − ).
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The analytical expression for δ1, β, γ1, γ2 , Δa and Δb is given in Ref.
[14]. The system reduces to the Ising model with transverse field at
J J1 2= , i.e., Jx becomes J J1 2+ and J 0y = . The effective Hamiltonian
becomes the transverse Ising model which is studied in the
previous literature [15–17]. Here our main motivation is to use
some of important results of this model Hamiltonian to discuss the
relevant physics of array of cavity QED system.

Before we proceed further, we would like to discuss in detail
the analytical relation between the different coupling constants of
cavity QED system to achieve this Hamiltonian. In the microcavity
array, the condition for J J1 2= achieves when
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The above condition implies that g g/a b a a b bΩ Ω Δ Δ= . The only
constraint is that a bΔ Δ≠ , the magnetic field diverges when

a bΔ Δ= . At the same time, a bΩ Ω= and ga¼gb are also not possible
because this limit also leads to the condition a bΔ Δ= . Suppose we
consider, a b1Ω α Ω= , g ga b2α= and a b3Δ α Δ= . These relations imply

that 21
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1 2 3α α α α α α+ = . 1 2 3α α α= , ,1 2α α and 3α are the numbers.
These analytical relations help to implement the transverse Ising
model Hamiltonian but α1, α2 and α3 should not be equal to 1.

The quantum state engineering of cavity QED is in state-of-the-
art due to the rapid progress of technological development of this
field [1]. Therefore one can achieve this limit to get the desire
quantum state.
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where J J B/1 2λ = ( + ) . The transverse Ising model was studied
widely in the literature and also exhibits a quantum phase tran-
sition between the magnetically ordered state to the quantum
paramagnetic phase for 1λ > and 1λ < respectively [15–17].

Now we express the condition for the magnetic order phase
and quantum paramagnetic phase in terms of the physical para-
meters of the optical cavity QED system which gives us the re-
levant physics of the system.

The condition for the magnetic ordered system can be ex-
pressed as
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The condition for the quantum paramagnetic phase is
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When the applied magnetic field is absent, the effective Ising
model has two degenerate ground states. The ground states are
A j jΠ| 〉 = | → 〉 , B j jΠ| 〉 = | ← 〉 . For a finite magnetic field but less
than J J1 2+ , the system has a tendency to flip the pseudo-spin. At
that phase one can write down the true eigen state,

A B1/ 2Aψ| 〉 = (| 〉 + | 〉), A B1/ 2Bψ| 〉 = (| 〉 − | 〉). Now our main inten-
tion is to recast this spin model in spinless fermion model through
the Jordon–Wigner transformation which relates the spin opera-
tors to the spinless fermion operators. We use the following re-
lation:
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One can write the Hamiltonian after the Jordon–Wigner transfor-
mation as
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We solve this Hamiltonian, to get the energy spectrum by taking
the Fourier transform.
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where ck and ck
† are the fermionic annihilation and creation op-

erator in momentum space.
The Hamiltonian reduce to
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Now our main task is to express the Hamiltonian in the diag-
onalized form. We follow the Bogoliubov transformation.
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The operator kη and kη † are the fermionic operators. We use the
following relations:
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