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a b s t r a c t

The energy spectrum and electronic density of states (DOS) of zigzag graphene nanoribbons with edges
reconstructed with topological defects are investigated within the tight-binding method. In case of the
Stone–Wales zz(57) edge the low-energy spectrum is markedly changed in comparison to the pristine zz
edge. We found that the electronic DOS at the Fermi level is different from zero at any width of graphene
nanoribbons. In contrast, for ribbons with heptagons only at one side and pentagons at another one the
energy gap at the Fermi level is open and the DOS is equal to zero. The reason is the influence of un-
compensated topological charges on the localized edge states, which are topological in nature. This
behavior is similar to that found for the structured external electric potentials along the edges.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Currently, there is a growing interest in studies of edge states in
graphene structures. It has been found that zigzag graphene na-
noribbons (ZGNRs) possess a localized edge state at the Fermi
energy which has a crucial influence on their electronic properties.
In particular, the energy band gap of the ZGNRs is zero due to the
existence of edge states and, consequently, these nanoribbons are
always metallic. The presence of energy gap is necessary for var-
ious applications in nanoelectronics and, therefore, an important
problem is to control and manipulate the edge states in ZGNRs.

Recently, the influence of external electric potentials applied
along the edges of ZGNRs has been investigated. It was found that
such potential can induce a spectral gap thus converting the me-
tallic behavior of the ZGNR into a semiconducting one. As was
mentioned in [1] this effect originates from the sensitivity of the
spinorial edge states to electric potentials. What is interesting, the
edge states are topological in nature [2,3]. Therefore one could
expect a similar influence in case of topological charges situated
along the edges. In order to check it we consider an artificial ZGNR
with edges reconstructed with pentagons at one side and

heptagons at the opposite side. For our motivation, it was shown
in works [4,5] that heptagonal defects influence the electronic
structure of the graphene nanostructure significantly.

Our task is to study the electronic band structure of ZGNRs with
reconstructed edges and to calculate the density of states (DOS).
For this purpose, we employ the well approved tight-binding
method [6] which has been successfully used in studies of edge
states in pristine ZGNRs [7]. The paper is organized as follows. In
the next section, we give a brief description of the tight-binding
method. Then, we study the energy band structure and the elec-
tronic DOS of endless ZGNRs containing periodically repeating
structures with edges reconstructed with two different kinds of
topological defects. A separate section is devoted to an analysis of
the stability of the investigated structure by using the programs
Avogadro [8] and GAMESS [9]. Finally, we present a brief
conclusion.

2. Tight-binding method

The tight-binding method assumes the numerical solution of
the stationary Schrödinger equation

H E , 1ψ ψ= ( )

where the Hamiltonian is written for π electrons in graphene
lattice with nearest-neighbors taken into account, ψ is the linear
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combination of the wave functions which correspond to the par-
ticular atoms in the unit cell. In graphene lattice, the unit cell
contains exactly two atoms while in graphene nanoribbons this
number is much larger (see Fig. 1). Let us enumerate them as
A A A, , , N1 2 … , where N is the total number of atoms in the unit cell.
Then

C C , 2A N A1 N1
ψ ψ ψ= + ⋯ + ( )

and one can define the matrix coefficients

H H rd , 3ij i j∫ ψ ψ= →
( )

⁎

where i j A A, , , N1∈ { … }. Owing to orthogonality of ψi one gets

C H C ES,
4j

N

j ij i
1

∑ =
( )=

where the normalization condition is chosen to be S rdi i∫ ψ ψ= →⁎

with S being the number of unit cells in the nanostructure. Finally,
solving the matrix equation (4) we obtain the energy eigenvalues
and thereby the electronic spectrum of the given nanostructure.
The electronic DOS is written as

DOS E E E k kd . 50

2
∫ δ( ) = ( − (

→
))

→
( )

π

In order to verify this consideration we have performed the
numerical calculations of the electronic spectrum and the DOS for
the ZGNR of given width. The results are shown in Fig. 2 and they
are in perfect agreement with [7].

3. Zigzag graphene nanoribbons with reconstructed edges

Let us first consider ZGNRs with edges totally reconstructed

Fig. 1. The unit cells for pristine (left), zz(57) (middle) and zz(5/7) (right) zigzag graphene nanoribbons.

Fig. 2. Lattice structure, electronic spectrum and density of states of endless zigzag graphene nanoribbon. The results are in perfect agreement with [7].
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