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a b s t r a c t

The topology-based explanation of the fractional quantum Hall effect (FQHE) is summarized. The cy-
clotron braid subgroups crucial for this approach are introduced in order to identify the origin of the
Laughlin correlations in 2D (two-dimensional) Hall systems. Flux-tubes and vortices for composite fer-
mions in their standard constructions are explained in terms of cyclotron braids. The derivation of the
hierarchy of the FQHE is proposed by mapping onto the integer effect within the topology-based ap-
proach. The experimental observations of the FQHE supporting the cyclotron braid picture are reviewed
with a special attention paid to recent experiments with a suspended graphene. The triggering role of a
carrier mobility for organization of the fractional state in Hall configuration is emphasized. The pre-
requisites for the FQHE are indicated including topological conditions substantially increasing the pre-
viously accepted set of physical necessities. The explanation of numerical studies by exact diagonaliza-
tions of the fractional Chern insulator states is formulated in terms of the topology condition applied to
the Berry field flux quantization. Some new ideas withz regard to the synthetic fractional states in the
optical lattices are also formulated.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Observation of the fractional quantum Hall effect (FQHE) was
one of the most important discoveries of the 20th century. The
experiment carried out by Tsui et al. revealed plateaus in the
longitudinal resistance appearing concomitantly with dips in the
transverse one for 2DEG partially filling the lowest Landau level
(LLL) upon strong magnetic fields and temperatures below 4 K [1].
An origin of the elder integer quantum Hall effect (IQHE) was
explained shortly after its discovery within a single particle ap-
proach including topology arguments [2]. Actually, the first ex-
planation was even simpler—it is assumed that for completely
filled Landau levels (LLs) an electron cannot scatter between dif-
ferent one particle states and a current cannot flow in the direc-
tion of a voltage ( R 0xx = ). In opposition, the fractional quantum
Hall effect is a collective phenomenon being a manifestation of
strong interparticle correlations and, despite the intensive re-
search, its nature is still not fully understood. The basic pre-
requisite for the FQHE formation is the flat band with quenched
kinetic energy, as in the almost degenerated LLL in the presence of
interaction (and massively degenerated without interactions).
Reducing of the kinetic energy role allows for the subtle interac-
tion effects resulting in the organization of correlated multiparticle

states. An important role is played by a very special 2D topology—
there is no evidence of the FQHE in three-dimensional (3D)
samples.

The first step towards the description of correlations in the LLL
was taken by Laughlin. He proposed a wave function for

q
1 (q-odd)

filling factors formed with a Jastrow polynomial and a Gaussian
factor [2]
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where z x iyi i i= + is a complex position of ith particle on a plane,

l c
eB

= is a magnetic length. The representation of the Coulomb

repulsion in the form of Haldane pseudopotential revealed that
this Laughlin function (LF) describes the exact ground state for N
charged particles placed on a plane, if one neglects the long-range
part of the Coulomb forces [4–6]. Division of the interaction for
near- and long-range parts is expressed by its projection onto the
relative angular momenta of particle pairs: values greater than
q�2 correspond to the long-range tail, while values lower than
q�2—to the near range part of the field. It has already been proved
that the long-range tail influences only slightly the exact ground
state obtained only with a short-range part included. Note that the
LF is actually a generalized Slater function [7] with a p power
introduced in the Vandermonde polynomial
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The main difference between these two functions is disclosed
when two particles are exchanging on a plane—the phase shift
obtained by the Laughlin function is p times greater (pπ) than by
the Slater function (π). It should be mentioned that exchanges of
particles located on locally 2D manifolds are considerably different
than those for particles located on manifolds of higher dimensions.
In the latter case the exchanges correspond to simple particle
permutations and are expressed with algebraic properties of the
multi-argument wave function. For 2D spaces the exchanges are
related to the full braid group elements, different from simple
particle permutations. The full braid group is actually a homotopy
group (π1) of the configuration space of the N indistinguishable
particle system, so a group of classes of homotopic trajectories.
Finally, association of the algebraic properties of multi-argument
functions with exchanges of particles described by these functions
may be misleading and exchanges of function arguments must be
referred to the braid group distinct than the permutation group
(Fig. 2). However, the mentioned difference is considered to be a
hallmark of Laughlin correlations, even though the unitary factor
e 1iq = −π equals to e 1i = −π . So, this property does not allow us
to distinguish correlated particles from ordinary fermions.

Despite the fact that neglecting the topology and relying only
on properties of the LF is insufficient for a complete explanation of
the FQHE origin, some quite successful theories where introduced.
One of these theories is the so-called composite fermion (CF)
model, proposed by Jain [8]. It assumes that these new particles
are just electrons dressed with q�1 magnetic field flux-quanta (q

is the number of flux quanta of an auxiliary magnetic field) re-
sulting from interactions, in analogy to the three-dimensional
Landau quasiparticles in solids [9]. The proper phase shift is ob-
tained due to the Aharonov–Bohm effect, since an exchanging
composite particle sees the flux quanta placed on the opposite
fermion. The success of the CF construction lies in the possibility of
reduction of the FQHE of electrons to the well-understood IQHE of
composite fermions experiencing a lower effective magnetic field
(the localized magnetic flux quanta screen an external field,
leading to q q 1 1− ( − ) = quanta per composite particle). However,
assertion of flux tubes—as a result of the Coulomb repulsion forces
—should not be used in a 2D space without proper explanation
(the matrix element of the interaction is not a continuous function
of distance). As a consequence, this simplistic, one-particle theory
seems to model with artificial objects, rather than explain, the real
complicated behavior of the particles. Nevertheless, the CF idea
allows for estimating the main line of the FQHE hierarchy

— q 1
n

n
q n

1 1

1 1( )ν = ( − ) ± =
−

( − ) ±
(q—odd integer, n—integer) [8]—

corresponding to the complete filling of the nth LL in the screened
magnetic field. This resultant effective field can be oriented along
or opposite to the original one, thus 7 is appearing in the filling
factor expression. The compatibility of the hierarchy with the ex-
periment suggests that despite all problems and ambiguities
mentioned above, it models some more fundamental properties of
2D systems in strong magnetic fields. For a relatively long time
these properties were not recognized. A progress was achieved
recently [10] in terms of cyclotron braid subgroups, which will be
also presented in more details in the present paper.

The competitive construction of CFs was formulated shortly
afterwards by Read [11,12]. This formulation is based on the con-
ception of collective fluid-like objects called vortices, which are
characterized with q-vorticity and are similar to the well-known
constructions present in superfluid systems. The vortices are pin-
ned to bare fermions—resulting complexes are also called com-
posite particles (not only composite fermions, but also composite
bosons), since they reproduce the Laughlin correlations [11].
However, the vortex is expressed with a fragment of the Jastrow
polynomial—V z z zj

N
j

q
1( ) = ∏ ( − )= . Thus, all particles contribute to

the vortex definition and the vorticity coincides with the q-power
in the LF. Therefore, it is not surprising that fermions dressed with
vortices (when the argument z is assumed zi) reproduce the
Laughlin correlations, since the vortex notion arises immediately
from a simple decomposition of the LF with the vorticity taken
from the Jastrow polynomial known in advance. Thus, this com-
petitive conception do not explain the FQHE origin (it can be ra-
ther understand as a different representation of the LF) and its
significance is rather of illustrative type.

Both types of composite particles, with vortices or with flux
tubes, are thus phenomenological in nature, and the question
arises as of what is a more fundamental reason of Laughlin cor-
relations in 2D charged systems upon sufficiently strong magnetic
field and of how are they linked to specific 2D topology. The role of
topology in the strongly correlated state creation was noticed [13–
15] in the context of exceptional topological properties of a plane
and locally 2D manifolds like sphere or torus. This unique topology
of planar systems is linked with an exceptionally rich structure of
their braid groups in comparison to ones of higher dimensional
spaces (Rd, d 2> ) [16]. As it was already mentioned, the full braid
group is a group of multi-particle closed trajectory classes, disjoint
and topologically nonequivalent (trajectories from different classes
cannot be continuously deformed one into another). In the case of
2D spaces the full braid group is infinite, while for manifolds of
higher dimensions it is finite and equal to SN—the permutation
group of N elements [16]. This property makes 2D systems ex-
ceptional in geometry–topology sense, which inherently lies in

6 7 8 9 10 11 12 13 14
0.0

0.5

1.0

1.5
17
5

13
4

13
5

8
3

17
6

10
3

11
4

11
7

3
1

7
2

5
2

5
3

3
2

2119
1010

MAGNETIC FIELD [T]

T ~ 35 mK

R
xx
(k
Ω
) 2

1

Fig. 1. Observation of the FQHE in a GaAs/AlGaAs quantum well with an electron
density of 1011 1/cm�2. Rxx for 2

3
2
7

ν> > at the temperature equal T ∼35 mK is
presented. The Hall resistance Rxy in the region of 7

11
ν = and 4

11
ν = is marked with

a dotted line (after Ref. [3]). Fractions outside the standard CF hierarchy are in-
dicated in color. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

Fig. 2. The geometrical presentation of si—the generator of the full braid group of
R2 space and i

1σ − —its inverse; in 2D ei
2σ ≠ .
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