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a b s t r a c t

Flexoelectricity provides a two-way connection between strain gradients and polarization that is pro-
nounced at the nanoscale for isotropic materials which cannot link electromechanically via piezo-
electricity. In this paper, the general equations for an isotropic, flexoelectric material were formulated,
with contributions from strain gradients included. The electromechanical fields associated with a point
charge in an infinite medium were derived, and results for GaAs were obtained. Our formulation yields
two electromechanical length-scales, instead of one obtained from previous theories, and enables us to
capture local fields accurately. Results from this paper provide insight into the electro-mechanical be-
havior of materials with charged defects.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Flexoelectricity is a type of electro-mechanical coupling me-
chanism that provides a linkage between mechanical strain gra-
dient and electric polarization, as well as a connection between
polarization gradient and mechanical strains. In analogy with
piezoelectricity, the former is referred to as the direct flexoelectric
effect, while the latter is indicated by the term “converse flexo-
electric effect”. From a macroscopic perspective, the salient feature
that distinguishes flexo- and piezo-electricity is that flexoelec-
tricity is a gradient phenomenon that can be significant only when
strains and polarization are non-uniform. Further, since the ma-
terial constants that characterize flexoelectricity are typically very
small, flexoelectric contributions to polarization become appreci-
able only at small length scales due to the presence of high strain
gradients associated with heterogeneities that may have high
elastic and dielectric contrast with the parent material. Micro-
scopically speaking, piezoelectricity occurs only in non-cen-
trosymmetric materials (such as ZnO or any non-cubic phase of
BaTiO3) due to the creation of dipole moments upon application of
strain. In contrast, flexoelectricity most clearly manifests itself in
centrosymmetric materials (such as NaCl or cubic BaTiO3) for
which dipoles can only be created by applying a non-uniform
strain so that the respective centroids of positive and negative
charges shift away from each other [1]. In what follows, we will
confine the discussion to flexoelectricity; for fundamentals of
piezoelectricity and related boundary value problems, Ikeda [2]
and the research of Pan and coworkers, e.g. [3–5] can be cited
respectively.

Flexoelectricity has been a subject of considerable interest and
has been studied both theoretically and experimentally – in var-
ious contexts over the last several decades. Given the availability
of some excellent reviews [6–9], only a condensed review is pro-
vided here. In an early landmark paper on converse flexoelec-
tricity, Mindlin [10] developed a continuum model that in-
corporated polarization gradient into the stored energy of elastic
dielectrics. Mindlin's theory provided a mathematical basis for
including the core–shell and shell–shell interactions between
atoms, in addition to the dominant core–core interactions de-
scribed by classical piezoelectricity. In a subsequent publication,
Mindlin [11] successfully used his polarization gradient theory to
explain the anomalous reduction in the capacitance of very thin
dielectric plates. Further, Mindlin [12] showed that for rigid di-
electrics, the classical Coulomb potential due to a point charge has
to be augmented by an additional exponential term that decays at
“large” distances from the point charge, but can provide a sig-
nificant correction in its vicinity. An important limitation to
Mindlin's work was that it did not account for the direct flexo-
electric effect, i.e., the coupling between strain gradients and po-
larization. Askar et al. [13–15] used lattice dynamics models to
determine the material properties for Mindlin's theory for certain
crystals (e.g., NaCl and KCl) and provided solutions to boundary
value problems involving cylindrical/spherical cavities and cracks.
Chowdhury and Glockner [16] used Mindlin's polarization gra-
dient theory to evaluate the fields associated with a point charge
inside an elastic, dielectric half-space. Nowacki and coworkers
[17,18] developed Green's functions for Mindlin's theory, and
provided illustrative solutions to several one dimensional pro-
blems. A notable enhancement of Mindlin's work was the in-
corporation of the direct flexoelectric effect in the stored energy of
a dielectric [7,1]. Maranganti and Sharma [7] derived Green's
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functions associated with a point force and a point electric field,
and provided solutions to the corresponding Eshelby's inclusion
problem [19]. Sharma et al. [1] explored the technologically-re-
levant “paradox” of creating “piezoelectric” dielectric nano-
composites without using piezoelectric constituents through the
universal mechanism of flexoelectricity. One of the key require-
ments for such a material would be a net non-zero dipole moment
in a representative volume element; in essence for a particulate
nano-composite, this would necessitate the use of low-symmetry
inclusion shapes that are oriented favorably in a particular direc-
tion. Recently, Shen and Hu [20] proposed a variational principle
that accounts for flexoelectricity and surface effects for elastic di-
electrics. More recently, Mao and Purohit [21] contributed solu-
tions to some boundary value problems for flexoelectric solids.
Morozovska and coworkers [22] used phase-field modeling and
DFT computations to accentuate the role of flexoelectricity in de-
fining the internal structure of ferroelectric domain walls. In an-
other work, the authors [23] employed the Landau–Ginzburg–
Devonshire theory to assess the role of flexoelectricity in the po-
larization of various types of interfaces in several otherwise non-
ferroelectric perovskites such as SrTiO3.

Despite the challenges associated with conducting experiments
at small length scales where the flexoelectric effect becomes ap-
preciable, numerous authors have reported findings consistent
with this phenomenon. Electromechanical coupling in dislocated
non-piezoelectric dielectric crystals was attributed to polarization
in the vicinity of dislocations where high strain gradients are ex-
pected [24–27]. As already noted, Mindlin [11] accounted for the
anomalously low capacitance of thin dielectric plates. Flexoelec-
tricity has also been observed in the bending of thin, crystal plates
[28] and in the inhomogeneous stretching of BST thin films [29].
The effect of curvature on the polarization of carbon nano-shells
has been studied by Dumitrica et al. [30]. Cross and coworkers
[31,32] have relied on flexoelectricity to engineer piezoelectric
composites by using non-piezoelectric constituents.

Given that flexoelectricity is a higher-order effect in compar-
ison with piezoelectricity, it is not surprising that the flexoelectric
coefficients for most materials are fairly small. Indeed, Kogan [33]
indicated that the lower bound for flexoelectric coefficients should
be of the order of e/a (10�9 C/m), where e is the electronic charge
and a is a lattice parameter. Similar estimates were derived by
Marvan and Havranek [34,35] for glassy polymers and elastomers
with a being interpreted to be a characteristic inter-atomic dis-
tance. A noteworthy feature of the elastomer model by these au-
thors was the linear proportionality of the flexoelectric coefficient
with the dielectric constant; this suggests that high flexoelectric
coefficients can be found in materials that possess high dielectric
constants. The experimental work of Cross and co-workers [36–
39] has indicated high flexoelectric coefficients (10�6 C/m) in
certain ferroelectric perovskites such as BST, PZT and PMN. High
flexoelectric coefficients have also been reported for the polymer
PVDF by Baskaran et al. [40,41]. However, their findings have been
disputed by Chu and Salem [42], who have measured much lower
flexoelectric coefficients for PVDF. The source of the disparate
experimental findings for PVDF is probably in part due to the
complexity of fully characterizing the microstructure of a polymer
and how it relates to the observed flexoelectric effect.

In this paper, we revisit Mindlin's [12] solution to the problem
of a point charge in a rigid dielectric in the context of an isotropic,
flexoelectric material that includes energy terms from elastic
strain-gradients. This paper will provide insight into the role of
small charged defects on the electro-mechanical fields induced in
the bulk of the material.

This paper is organized as follows. In Section 2, we outline the
governing equations for isotropic, flexoelectric materials. In Sec-
tion 3, we develop the solution for the electro-elastic fields

associated with a point charge embedded in an infinite dielectric
medium. This is followed by a discussion of salient results in
Section 4. We conclude in Section 5.

2. Formulation

We begin by considering a dielectric material occupying vo-
lume Ω and bounded by surface Ω∂ . The volume over all space is
denoted as Ω∞. The static version of Hamilton's principle states

⎜ ⎟⎛
⎝

⎞
⎠HdV F u E P dV t u dS 0
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where H is the electric enthalpy, Fi, Ei
0 and ti are the applied body

force, electric field, and traction respectively, ρ is the charge
density, ϕ is the electric potential, and ui and Pi are respectively
the displacement and polarization fields. The electric enthalpy is
taken to depend on the infinitesimal strain u u /2ij i j j i, ,ε = ( + ) , Pi and
their gradients, and the potential:
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where WL is the energy density associated with the dielectric. The
variation of H yields
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where the work conjugates E W P/i
L

i≡ − ∂ ∂ and Q W P/L
i jij ,≡ ∂ ∂ are

the electric field and higher-order electric force respectively, while
W /L

ij ijσ ε≡ ∂ ∂ and T W u/L
iijk ,jk≡ ∂ ∂ are respectively the symmetric

stress and a higher-order stress. Standard variational analysis can
be used to derive the equilibrium equations, constitutive equations
and the boundary conditions:
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where i,ϕ∥ ∥ is the jump in the potential gradient across Ω∂ .

D nN
i i≡ ∂ and D n Di

S
i i

N≡ ∂ − are the normal and surface gradient
operators respectively [43–45,21], and ni is the unit normal vector
to the surface Ω∂ . In order to establish the constitutive equations,
we consider the following form of the energy density [46,1]:
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where a is the reciprocal dielectric susceptibility tensor, b is the
fourth order tensor that models energy contribution from polar-
ization gradients, c is the linear elastic stiffness tensor, d is a tensor
that links polarization gradient to strains (converse flexoelectric
effect), f is a tensor that links polarization to strain gradient (direct
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