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a b s t r a c t

The energy balance equation for the electron–phonon system is recast taking the degeneracy of the
carrier ensemble into account. The effect of degeneracy on the field dependence of the temperature of
the non-equilibrium carriers has been studied by solving the same equation. The high field distribution
function of the carriers is assumed to be given by the Fermi Dirac function at the field dependent carrier
temperature. The distribution function has been approximated in a way that facilitates analytical solution
of the problem without any serious loss of accuracy. The field dependence of the electron temperature
thus obtained seems to be significantly different from what follows had the degeneracy not been taken
into account. The agreement of the results obtained from the present analysis with the available ex-
perimental data for Ge and InSb are quite satisfactory. The scope of further refinement of the present
theory is highlighted.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the presence of a relatively high field the free carriers in a
semiconductor may be significantly perturbed from the state of
thermodynamic equilibrium with the host lattice atoms. The cri-
tical field at which the electrons may be drifted to such a sig-
nificantly perturbed state in any material increases with the in-
crease of the lattice temperature and with the decrease of the
values of the initial mobility. For example, in n-Ge, when the lat-
tice temperature is low, say around 5 K, the electrons may be so
perturbed for a field of only a few V cm�1, and in InSb, when the
lattice temperature is around 2 K, similar perturbation may be
observed for a fraction of a V cm�1. On the other hand, if the
lattice temperature is raised to around room temperature, sig-
nificant perturbation of the carriers requires fields of several
kV cm�1 in Ge and some hundred V cm�1 in InSb. Thus, even a
seemingly low field may effectively turn out to be quite high if the
lattice temperature is low enough, and this may indeed cause
significant perturbation of the carrier system from the state of
thermodynamic equilibrium at the low temperatures. Such a
perturbed ensemble is known to exhibit a number of novel phe-
nomena which are technologically important from the device
point of view. Thus the problem of electrical transport in semi-
conductors in the presence of an effectively high field at any lattice

temperature, low or high has been of interest for many years [1–6].
To make a theoretical analysis of the characteristics of a ma-

terial in the presence of a relatively high field at any lattice tem-
perature, low or high, one needs to solve the Boltzmann Transport
equation taking into account the various interactions of the elec-
trons with the lattice defects. But, to arrive at an analytical solu-
tion of the transport equation under such conditions is almost
always beset with much mathematical difficulties. So one has to
either adopt simplifying assumptions which, very often, may
compromise with the physical validity of the results, or go for
some exact numerical techniques.

When the carrier concentration is large so that the energy ex-
change between the carriers is much faster than that between the
carriers and the lattice, the carriers share their energy mainly
among themselves. The carriers then, in the presence of a rela-
tively high field at any lattice temperature TL, low or high, may
become ‘hot’ attaining a field dependent effective temperature Te
that exceeds TL. Obviously Te gives a measure of the average en-
ergy of the ensemble. Under these conditions, the high field en-
ergy distribution for a degenerate ensemble may be approximated
by the Fermi Dirac distribution at a carrier temperature Te [1,2].
The mean carrier energy as calculated in the diffusion approx-
imation is given by
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energy and FK e(η ) are the Fermi integrals [6,7]. However, for re-
latively lower concentration of the carriers when 0Fε < and Fε is
much larger than k T ,B e the materials seem to be non-degenerate
and the Fermi function simplifies to the Maxwellian function.
The average energy under this condition simplifies to 3k T /2B e
[6,8]. In either case, the field dependence of the effective tem-
perature of the electrons may be calculated from the solution of
the energy balance equation. The solution however, depends
upon the dominant type of interaction under the prevailing
condition and the band structure of the material. The interac-
tion with the optical and intervalley phonons may be dominant
for lattice temperatures above some hundred degrees. On the
other hand, the interaction with the intravalley acoustic pho-
nons is intrinsic and may dominate along with the impurity
scattering at the lower temperatures. However, the collision
with impurities being elastic, the intravalley acoustic phonon
scattering will dominate in determining the field dependence of
the effective electron temperature in the lower temperature
regime. Such field dependence has already been worked out for
a non-degenerate material [1,2,6]. The dependence is of the
simple form T T E1n n

2( )− ~ where T T T/ .n e L= Obviously such de-
pendence is predicted for samples having lower carrier con-
centrations and at the higher lattice temperatures.

At lower temperatures, however, as a result of increasing the
doping level the electron concentration in an n-type material in-
creases, and when it eventually exceeds the effective density of
states, the Fermi level Fε moves into the conduction band. Under
this condition and when Fε is not much lower than k TB L of the band
edge, and the electron densities are beyond the insulator to metal
transition, the electron ensemble turns out to be degenerate. A
rough estimate of the critical donor concentration ND for the onset

of the degeneracy may be estimated from ⎜ ⎟⎛
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where h/2ℏ = π, h being Planck’s constant, m* is the effective mass
of an electron and Ed is the donor ionization energy. The degen-
eracy is said to be extreme when k TF B Lε ≫ . The degenerate ma-
terials serve as the basis for a number of useful semiconductor
devices [8,9]. The knowledge of the electrical transport char-
acteristics of degenerate materials thus being important, some
aspects of such characteristics have already been studied by a
number of workers including one of the present authors [10–14].

The purpose of the present communication is to obtain the
electric field dependence of the effective electron temperature Te
for a degenerate ensemble of electrons which is subjected to a
relatively high field, and under the condition when the interaction
with the intravalley acoustic phonons dominate. Before solving the
energy balance equation for the electron–phonon system, it is first
recast taking into account the degeneracy of the electron en-
semble, the energy distribution of which is described by the F.D.
statistics at the field dependent effective temperature Te. Because
of the complexity of the F.D. distribution, the integrals that occur
while solving the energy balance equation are not usually amen-
able to analytical evaluation. In the present analysis some alter-
native model of the distribution has been used so that the in-
tegrals can indeed be carried out analytically without compro-
mising with the validity of the final results. The numerical results
obtained for Ge and InSb from the present analysis are then
compared with other theoretical and experimental results. The
agreement of the results from the present analysis with that from
the experiments seems to be significantly better. The calculations
have been carried out for any finite value of the degeneracy and
the lattice temperature.

2. Development

The condition for energy conservation of the electron–phonon

system may be expressed as [1,2,6]
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The distribution function in the diffusion approximation may be
written as
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θ being the angle between the wave vector k
→

and the electric field

E
→
.
Let us consider a volume V of an isotropic, degenerate semi-

conductor material with a single, parabolic, spherically symmetric
conduction band. Taking into account the four processes of ab-

sorption and emission involving a phonon of wave vector q
→

that

leads to the scattering of the electrons into and out of the state |k
→
〉

for transitions to and from the states |k q+
→ →

〉 and |k q−
→ →

〉 , it follows
from the perturbation theory that
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where N
q
→ is the equilibrium distribution function of the pho-

nons,
q

ω→ is the angular frequency of a phonon with the wave

vector q
→
. The upper or the lower sign in the first term must be

taken for the processes of emission and absorption respectively,
whereas those signs in the second term stand for the reverse
processes.

It is well known that when the band edge shift is linearly de-
pendent upon the strain, one can neglect the spin exchange
scattering [15], as such the matrix element for the transition re-
mains unchanged for a degenerate ensemble, and hence it is given
by [1,2,8]
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where E1 is the deformation potential constant, ρ is the density of
the material and ul is the average acoustic velocity. Now following
the standard procedure [1,2] one can obtain for a degenerate
ensemble
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