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a b s t r a c t

The present paper is aimed at studying the boundary value problem in elasticity theory concerning the
propagation behavior of harmonic waves and vibrations on the surface of the transversely isotropic laser-
excited crystalline solids with atomic defect generation. Coupled dynamical diffusion-–deformation in-
teraction model is employed to study this problem. The frequency equations of surface waves in closed
form are derived and discussed. The three motions, namely, longitudinal, transverse, and diffusion of the
medium are found to be dispersive and coupled with each other due to the defect concentration changes
and anisotropic effects. The phase velocity and attenuation coefficient of the surface waves get modified
due-to the defect–strain coupling and anisotropic effects, and are also influenced by the defect relaxation
time. A softening of frequencies of surface acoustic waves (instability of frequencies) is obtained. Re-
levant results of previous investigations are deduced as special and limiting cases.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Theory of elastic waves coupled to defect dynamics is an im-
portant generalization of the classical theory of elasticity. Problems
concerning defect generation play a vital role in theoretical and
practical problems of laser additive micro-and nanotechnologies,
materials processing technology and etc. The theory of elasticity
concerning the solid elastic material consisting of a distribution of
defects is used widely for investigating such phenomena as laser
annealing, fast recrystallization, selective laser sintering of powders
and laser-assisted thin-film deposition process for which the use of
the classical elasticity theory for mechanical behavior of materials is
inadequate. All above-mentioned processes can be accompanied by
the generation of atomic point defects (interstitial atoms, vacancies,
adatoms, electron–hole pairs). Also, efficient generation of none-
quilibrium atomic defects may occur as a result of the action of
intense impulse external energy fluxes (laser and corpuscular ra-
diations) on condensed media or as a result of mechanical, thermo-
chemical, and electric treatments of materials. The theory to include
the effect of defect concentration change, known as diffusion–strain
(DS) coupled theory, is well established [1,2]. This theory deals the
deformational behavior of materials with a distribution of non-
equilibrium atomic defects, where the concentration of defects is
included among the kinematic (diffusional) variable. The theory
reduces to the classical theory in the limiting case of concentration
of defects tending to zero.

DS coupled theory has been receiving a lot of attention for the past
two decades. Extensive theoretical efforts have been made so far to
study the dynamical interaction between the defect concentration and
mechanical fields in laser-excited solids in the context of DS coupled
model. The problem of linear elasto-diffusive Rayleigh-type wave
propagation on the surface of isotropic semi-infinitive solids and elastic
thin plates with atomic defect generation has been considered by [1–
5]. It has been shown that the surface waves in these types of media
are dispersive in contrast to classical theory of elasticity in which
Rayleigh-wave motions are not dispersive at any frequency. In general
case, the surface waves are found to exhibit frequency dependent
dispersion and are accompanied with attenuation or amplification. In
Refs. [6,7], the small-scale effects on propagation of elasto-diffusive
waves have been investigated in the context of coupled DS theory.

For high intensities of incident laser radiation, the concentra-
tion of defects becomes so high that one should expect the ap-
pearance of co-operative effects in an ensemble of interacting
(through the self-consistent elastic field of displacements in a
medium) defects. The 1D and 2D self-organization of nonlinear
coupled periodic and localized strain–defect structures (solitons or
solitary waves) due to concentration-elastic instability were con-
sidered in [8,9]. A mechanism on the development of the in-
stability is due to the coupling between defect dynamics and
elastic field of the solids. Stabilization of this instability is due to
the nonlinearity of the elastic continuum. The mathematical
models of these studies were based on the wave type (hyperbolic)
equations of motion for the displacement vector and diffusion type
(parabolic) equation for atomic defect concentration accounting
for elastic and concentration nonlinearities.
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The theory of mechanical waves coupled to atomic defect dy-
namics and including thermal change effects in solids under the
action of laser pulses has been considered by Mirzade [10] and
Bargmann and Favata [11]. Some features of the physical problems
coupling diffusion, mechanics and thermal waves in geometrically
linear and nonlinear solids has been studied in Refs. [12–14].

An overview of methods for analysis of elastic fields in solids
from various structural defects (dislocation, inhomogeneous in-
clusions, grain boundaries and cracks) was presented by Mura [15]
using the concept of eigenstrains in micromechanics. In the Mura’s
eigen-strain theory, the eigen-strains corresponding to each defect
are conveniently expressed in terms of a defect density tensor. This
theory has been applied successfully to modeling many important
processes in crystalline solids such as diffusional phase transfor-
mations and microstructure coarsening, which involve diffusional
redistribution of atoms under the influence of stresses arising from
coherent compositional inhomogeneities as well as from structural
defects [16,17]. The spatial distribution of defects in these models
is described by the space-dependent eigenstrains. New perspec-
tives on the phase field approach in modeling deformation and
material defects as well as microstructural evolution (grain
growth, precipitate evolution, solute segregation) are reviewed in
[18]. Most of the studies on waves coupled to defect dynamics in
elastic media discuss the propagation in isotropic media.

Investigations of waves in anisotropic media are considerably
more difficult than the classical and well-understood isotropic
problem. The theory of elastic wave behavior propagation in ani-
sotropic solids is well established [19,20]. Extensive theoretical
efforts have been made so far to model the effect of heat con-
duction upon the propagation of plane harmonic waves in aniso-
tropic elastic solids [21–26]. The study of wave propagation in a
generalized thermoelastic anisotropic media with additional
parameters like prestress, porosity, viscosity, thermal relaxation
time, microstructure and other parameters allowed us to obtain
vital information about existence of new or modified waves. The
eigen-value problems of elastic waves in piezoelectric anisotropic
solids were studied by Guo [27]. Valuable attempts have been
carried out in [28] to investigate the propagation of waves in a
homogeneous, transversely isotropic, piezo-thermoelastic plate.
Acharya et al. investigated the general theory of transversely iso-
tropic magneto-elastic interface waves in conducting media under
initial hydrostatic tension or compression [29].

The growing applications of new anisotropic materials, espe-
cially in the various laser technologies, have encouraged the stu-
dies of impact and wave propagation in the anisotopic laser-ex-
cited materials and have become very important. In Ref. [30] the
DS coupled model has been extended to anisotropic laser-excited
solids with atomic defect generation. Propagation of a body plane
harmonic wave in an infinite elastic transverse isotropic solid was
discussed in particular. It was found that four dispersive wave
modes are possible namely, three quasi-elastic wave modes (E)
and one quasi-defect concentration wave mode (N). All motions of
the medium are found dispersive and coupled with each other due
to the defect concentration changes and anisotropic effects.

The present paper is a continuation of our previous work [30]. Its
purpose is to study in the context of the DS coupled model the
nature of Rayleigh-type surface wave propagation and vibrations in
an anisotropic laser-excited solid with a distribution of atomic de-
fects. The author believes that the problem in its present form has
not been discussed so far. In the present investigation, frequency
equations of coupled elasto-diffusive waves are obtained and some
properties of their solutions are discussed. It is found that the sur-
face waves are again found to be dispersive in character. The form of
the frequency equations for small values of the diffusion-strain
coupled parameter is also deduced and solved analytically. The
phase velocity and attenuation coefficients of the waves are

influenced by the anisotropic effects. Finally, the derived secular
equations in various cases are solved numerically. The computer
simulated results for a single crystal of Zn in respect of dispersion
curves and attenuation coefficient are presented graphically. The
obtained results are in agreement with the corresponding classical
results of previous studies for limiting and special cases.

2. BASIC governing equations

Consider an elastic crystalline solid with hexagonal or trans-
verse isotropic symmetry occupying the half-space z 0≥ in Car-
tesian coordinate system xyz0 . We assume that the planes of iso-
tropy are perpendicular to z-axis. We choose x-axis in the direc-
tion of the propagation of waves so that all particles on a line
parallel to y-axis are equally displaced. Thus the motion of the
medium is supposed to take place in the xz plane and for the as-
sumed motion the displacement vector u→ has the component
u w, 0,( )and all the other variables depend on x z, and t only.

Let us assume that an external energy flux (e.g., laser radiation)
generates high concentrations of non-equilibrium atomic defects
(vacancies (V-defects) and interstitials (I-defects)) in the near-
surface layer (due to heating and renormalization of the defect
formation energy). On one hand, the presence of defect density
profile results in a force that may induce strain field in medium.
On the other hand, when the strain waves propagate, the forma-
tion and migration energies of defects change in the compression
and dilatation zones; this results in modulations of generation (g)
and recombination (r) rates of defects. Therefore, the evolutions of
strain and defect concentration fields are inherently coupled.

The dynamical model that can describe the evolution of such a
system should be based on: (i) the evolution of atomic defect con-
centration in a strained solid and (ii) the displacement field of a solid
in the presence of a non-uniform defect concentration field. In for-
mulating our theory, we limit our considerations to the case of only
one type of atomic defects (for definiteness, I –type defects). Let the
medium’s temperature be constant (with thermal strains neglected).

Following [30], the constitutive strain–stress-defect relations
and 2D field equations in terms of the displacement vector
u u w, 0,→ = ( ) and defect concentration fields n x z t, ,( ) for a linear
transversely isotropic elastic medium, in the absence of the body
forces, are

c u c w n, 1xx x z11 , 13 , 1σ = + − ϑ ( )

c u c w n, 2zz x z13 , 33 , 3σ = + − ϑ ( )

c u w2 , 3xz z x44 , ,( )σ = + ( )

c u c u c c w u n , 4xx zz xz x11 , 44 , 13 44 1 ,ρ+ + ( + ) − ¨ = ϑ ( )

c c u c w c w w n , 5xz xx zz z13 44 44 , 33 , 3 ,ρ( + ) + + − ¨ = ϑ ( )

⎡⎣ ⎤⎦n D n D n n g u w , 6xx zz x z
1

1 , 3 , 0 1 , 3 ,τ β− − + ̇ = ϑ + ϑ ( )−

where cij are the components of the elasticity tensor, ρ is the
density of the medium, D1, D3 and 1ϑ , 3ϑ , are respectively, the
diffusivities and deformational potentials along and perpendicular
to the plane of symmetry; r1τ =− is the defect recombination rate
(τ , relaxation time); g0 is the defect generation rate constant;

k TB
1( )β = − . The comma notation is used for spatial derivatives and

a superposed dot denotes time differentiation. The terms on the
right-hand side of Eq. (6) account for the strain-induced genera-
tion of defects. The origin and the physical meaning of these terms
are explained in Ref. [1].
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