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a b s t r a c t

The effect of electron–phonon interaction on the spectral function of a magnetic impurity in a non-
magnetic host metal is studied within the framework of the Anderson–Holstein model using a spectral
density method. The impurity contribution to the specific heat of the host metal is also calculated.

& 2015 Published by Elsevier B.V.

1. Introduction

Several investigations were made in the past on the properties
of dilute magnetic alloys. One of the most interesting phenomena
that attracted a lot of attention in this context was the appearance
of a broad minimum in their resistivity at low temperature. This
effect, known as the Kondo effect [1], was first explained by Kondo
and can be captured through the single-impurity Anderson model
[2–5]. In strongly correlated systems, impurity vibrations do also
couple to the local charge on the impurity leading to an electron–
phonon (el–ph) interaction. Thus in recent years, a few investiga-
tions have also been reported on the influence of el–ph interaction
on the Kondo effect [6–8]. In the present work we shall study the
effect of el–ph interaction on the spectral function of the impurity
and determine its contribution to the specific heat of the non-
magnetic host metal.

We shall model a dilute magnetic alloy by the single-impurity
Anderson–Holstein (AH) Hamiltonian [9] which is obtained by
adding the well-known Holstein el–ph interaction term to the
Anderson Hamiltonian to describe the linear el–ph coupling pre-
sent on the impurity. This model was first introduced to describe
negative-U tunneling centers in superconductors [10]. In recent
years this model has also been used to study a few other systems
like heavy fermionic systems [11] and quantum transport in single
molecular transistors [12, 13]. In the present paper we are inter-
ested in the contribution of the magnetic impurity to the specific

heat of the system. This can be obtained from the double-time-
temperature Green functions using the equation of motion
method. However, in these methods, one has to use some de-
coupling approximations for the higher-order Green functions,
which restrict the validity of the method. Indeed in a recent paper
[14], we have calculated the spectral function and the specific heat
of the impurity atom using the equation of motion (EOM) Green
function method within the framework of a mean-field decoupling
scheme which obviously ignores the fluctuations. The spectral
density method (SDM), proposed by Kalashnikov and Fradkin [15]
and later used by others [16–23] circumvents this problem. In this
method, instead of Green's functions one considers the corre-
sponding spectral densities and writes closed equations between
them to calculate the spectral density (SD) function. Once the SD
function is calculated, it becomes quite straight-forward to calcu-
late the specific heat of the impurity atom. In the present paper we
employ SDM to the AH model to calculate the spectral density of
the impurity atom and the corresponding specific heat.

2. Model

The AH model can be expressed as
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where n c ck k k( = )σ σ σ
† stands for the number operator for electrons

in the continuum momentum state k and spin σ with energy kϵ σ ,
c ck k( )σ σ

† being the creation (annihilation) operator for the elec-
trons, while n c cd d d( = )σ σ σ

† stands for the number operator for the
electrons of spin σ in the localized non-degenerate level d with
energy dϵ σ , c cd d( )σ σ

† being the creation (annihilation) operator for
these electrons. Thus the first and the second terms in Eq. (1)
describe respectively the electrons in the conduction band of the
host metal and that on the impurity atom. The third term gives the
on-site electron–electron (el–el) interaction at the impurity site, U
being the strength of the interaction. The fourth term describes
the interaction between the impurity and the conduction band
electrons with Vk as the strength of the interaction. This term can
also be referred to as the s–d interaction with Vk giving a measure
of the probability of hopping of an electron from the conduction
band to the impurity level. The fifth term denotes the free phonon
Hamiltonian with b b( )† as the creation (annihilation) operator for a
local phonon of frequency 0ω . The last term describes the local el–
ph interaction on the impurity with the dimensionless coupling
strength λ. Here all the energies are measured from chemical
potential.

3. Elimination of phonons

The el–ph interaction term in the Hamiltonian is first elimi-
nated by using the well-known Lang–Firsov [24] canonical trans-
formation with a generator
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followed by a zero-phonon averaging. The effective Anderson
Hamiltonian Heff reads
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is reminiscent of the well-known Holstein reduction factor. Due to
the polaronic effect, dϵ and U are renormalized. When the phonon-
mediated attractive el–el interaction overcomes the el–el Coulomb
repulsion, the formation of bipolaron at the impurity atom be-
comes possible [25]. The exponential reduction of the s–d inter-
action implies that the electron hopping is accompanied by a
phonon cloud. Here we assume Vk to be independent of k i.e. we
consider Vk¼V. In the long wavelength limit this is a good enough
approximation. Furthermore, we have considered for the conduc-
tion band of the host metal a constant density of states. In the
present work, we closely follow the approach of Gavrilenko and
Fedyanin [26].

4. Spectral density method

This method is based on the choice of a physically motivated
single-particle spectral density (SD) function with some para-
meters. In this work we use a modified Gaussian ansatz for the SD
function to consider the damping effect of quasi-particles on the
impurity. Thus we choose
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where Md
0 ω( )σ

( ) is the normalization constant, f ω( ) is the Fermi
distribution and α and Γ are the free parameters denoting the

position and width of the peak of SD function, respectively. The
free parameters are calculated self-consistently using the spectral
moment relation given by
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Once the SD function is obtained, the average occupancy of the
impurity can be determined in a self-consistent way at finite
temperature. We obtain
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To solve the above integral we use the Sommerfeld expansion
and retain terms up to quadratic in k TB . The contribution to the
specific heat C from the impurity electron [27] can be obtained
using the expression as
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5. Results and discussion

Here we consider a three-dimensional symmetric AH model i.e.
U/2dϵ = − and make a flat band approximation for the electron

density of states g 0( ). It is a good enough approximation in many
cases, as a small variation in the density of states does not sig-
nificantly alter the physical properties. We fix 10ωℏ = = and
measure energies in units of 0ωℏ . In Figs. 1 and 2 we study the SD
function as a function of ω for different values of the el–ph inter-
action strength λ for U 2= and U 5= , respectively. Comparison of
Figs. 1 and 2 shows that as the el–el interaction strength increases,
the height of the peak of the SD function also increases. The effect
of the el–ph interaction on the SD function is also clearly visible
from both the figures. In the absence of the el–ph interaction i.e.,
for 0λ = , the SD function has a peak at 0ω = . As the el–ph inter-
action increases, the peak position of the SD function shifts to-
wards the left. It indicates the formation of polaron at the
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