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a b s t r a c t

We calculate the electrical conductivity of a metallic sample under the effects of distributed impurities
and a random distribution of grain boundaries by means of a quantum mechanical procedure based on
Kubo formula. Grain boundaries are represented either by a one-dimensional regular array of Dirac delta
potentials (Mayadas and Shatzkes model) or by its three-dimensional extension (Szczyrbowski and
Schmalzbauer model). We give formulas expressing the conductivity of bulk samples, thin films and thin
wires of rectangular cross-sections in the case when the samples are bounded by perfectly flat surfaces.
We find that, even in the absence of surface roughness, the conductivity in thin samples is reduced from
its bulk value. If there are too many grain boundaries per unit length, or their scattering strength is high
enough, there is a critical value Rc of the reflectivity R of an individual boundary such that the electrical
conductivity vanishes for R Rc> . Also, the conductivity of thin wires shows a stepwise dependence on R.
The effect of weak random variations in the strength or separation of the grain boundaries is computed
by means of the method of correlation length. Finally, the resistivity of nanometric polycrystalline
tungsten films reported in Choi et al. J. Appl. Phys. (2014) 115 104308 is tentatively analyzed by means of
the present formalism.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The continuous progress of modern semiconductor industry
has resulted in a progressive shrinkage of the linear dimensions of
the electronic components. The dimensions of the thin films and
wires that constitute the building materials of the devices now
reach nanoscale sizes, which are not only smaller than the elec-
tronic mean free path λ of the carriers but are such that quantum
size effects begin to become important [1].

The electrical resistivity of large samples has been found to be
independent of size and shape. But, when one of its linear di-
mensions becomes comparable with the mean free path of the
conducting electrons, the resistivity increases over its bulk value.
This effect has been explained by Fuchs [2] and Sondheimer [3]
(FS) in terms of diffuse scattering occurring at the boundaries of
the film. The theory is based on an appropriate solution of the
Boltzmann transport equation and is, thus, semiclassical in nature.
When data is interpreted in terms of this formalism, the only

unknown parameter is p — the fraction of electrons that are
specularly scattered at the film surfaces. The FS formula for the
conductivity FSσ is
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where t is the thickness of the film and s0 is the conductivity of a
bulk sample of identical composition.

Similar explanations have been found for the increase in the
electric resistivities of thin wires of circular cross-section [4] and of
square cross-section in case of completely diffuse surface scatter-
ing [5]. (For many years it was believed that the formalism of
Chambers [6] — which is known to be equivalent to solving the
Boltzmann transport equation — could be used for obtaining for-
mulas expressing the resistivity of wires of arbitrary shapes and
surface reflectivities. But this conjecture is now known to be er-
roneous [7].)

Further measurements on thin films and wires of increased
purity did show that the electrical resistivity increases beyond the
predictions of the FS theory. Mayadas and Shatzkes (MS) attrib-
uted this additional resistivity to scattering of electrons by grain
boundaries [8]. According to this theory, the electrical conductivity

MSσ of a bulk sample with average grain diameter d and mean free
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path λ is (in units of s0, the conductivity of an identical sample
having no grain boundaries)
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and where the parameter R denotes the reflection coefficient of a
single grain boundary.

Furthermore, Mayadas and Shatzkes obtained a second formula
describing the electrical conductivity of a polycrystalline thin film.
This expression is similar in the form to FS formula, except that the
unperturbed mean free path is incremented by an angle-depen-
dent quantity that describes the additional scattering taking place
at the grain boundaries. Again, the relevant parameter is the re-
flectivity R [8].

The conductivity MSSσ predicted by this formula is
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For a long time, these formulas were the only tools possessing
firm theoretical foundations that the experimenters could use in
order to interpret their results. For lack of anything better, a
number of semi-empirical formulas were also proposed and used
[9–11]. Thus, the electrical conductivity of thin films of copper
[12], gold [13] and tungsten [14] was measured, together with
their respective thicknesses and grain diameters. It was found that
the measurements of Cu films could be adequately interpreted by
a combination of Eqs. (1) and (2), according to Matthiessens' rule
[12]. On the other hand, it was determined that the dependence of
the resistivity of Au films [13] on thickness and grain diameters
was better explained by means of MS formula (4). Finally, Choi
et al. tried to interpret the resistivities of thin W films by means of
these methods, concluding that they were essentially equivalent in
this case and that both resulted in systematic deviations from the
experimental values [14].

The electrical conductivity of thin polycrystalline wires of gold
[15], copper [10,11,16], and silver [7] was also measured for a
number of thicknesses and grain diameters. Here, the lack of any
formalism corresponding to (2) and (4) was most sorely felt. Josell
et al. [7] noted that the many formulas employed in this connec-
tion were not equivalent. Furthermore, their purported justifica-
tion in terms of Chambers' method [6] was shown to be erroneous
[7].

Recently, a semi-numerical procedure for calculating the com-
bined effects of surface roughness and grain boundaries on the
conductivity of polycrystalline metallic films has been published
[17]. The method is essentially equivalent to using an exact solu-
tion of the Boltzmann transport equation. By means of this for-
mulation, it was possible to obtain tentative fits of the measure-
ments of Steinghögl et al. of thin Cu films [16] and Josell et al. of
thin Ag wires [7].

When solving the Boltzmann transport equation, the effects of
the scattering by distributed impurities may be taken into account
by fixing the time of relaxation, whilst those of diffuse surface
scattering may be accounted by choosing appropriate boundary

conditions. However, the contribution of grain boundaries cannot
be adequately described by either of these procedures. In the
formalism of MS, grain boundary scattering is represented by the
transition probability of scattering between two momentum
states, calculated by first-order perturbation theory [8]. Thus, it
appears that the theory can adequately describe the facts only for
small enough values of R, the reflection coefficient of an individual
grain boundary. Indeed, the analysis of thin film data made by
Henriquez et al. [13] suggests that the corresponding MS formula
is reasonably accurate only for values of R that do not exceed ≃0.3.

Fortunately, the combined effects of distributed impurities and
a regular array of grain boundaries can be accounted for at all
orders of perturbation theory by means of a procedure that is
quantum throughout. The purpose of the present work is to ex-
tend the ideas developed in Ref. [18]. In this paper we compute the
effects of grain boundaries on the electrical conductivity of bulk
samples and thin films and wires by means of the Kubo formula.

In the formalism of Kubo [19], the electrical conductivity s is
given by
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where �e and m are the charge and mass of the carriers, re-
spectively, V is the volume of the sample and G r r,( ′) is Green's
function appropriate for each case. For instance, it is customary to
account for the effects of distributed impurities by adding an
imaginary part to the Fermi energy — or to the Fermi wave vector
kF — as the quantum analogue of the mean free path λ [20]. By
inserting into (6) Green's function for an infinite system
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one obtains, for the conductivity of a bulk sample,
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This coincides in the form with the well known Sommerfeld–
Drude prescription [21]
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if we identify the real part of kF with the observed value of the
Fermi wave vector kF

¯ and its imaginary part as k 1/2F λ=I [22].

2. Grain boundaries and bulk conductivity

Excluding many-body effects, Green's function is the solution of
the inhomogeneous Schrödinger equation
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that is symmetrical in its arguments G Gr r r r, ,( ′) = ( ′ ) and satisfies
appropriate conditions at the boundaries of the sample. Here

k m/ 2F F
2 2= ( ) is the Fermi energy (kF is the Fermi wave vector)

and V r( ) is an effective potential to be chosen in order to ade-
quately model the effects of grain boundaries.

As a first approximation, Mayadas and Shatzkes noted that
grain boundaries may be roughly classified as being oriented
parallel or perpendicular to the applied electric field E. Therefore,
since the parallel barriers are encountered mainly at grazing in-
cidences and, thus, do not contribute much to the scattering of the
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