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a b s t r a c t

In the framework of an extended phenomenological approach to phase transitions, we show that existing
nonlinear relation between local critical atomic parameters and phenomenological order parameter
induces the corresponding nonlinear temperature scaling transformation, and find the explicit form for
such a transformation. The theoretically predicted uniform function reproduces well the experimentally
observed behavior of order parameters in different systems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is well established in the literature that, despite the fact that
the phenomenological Landau theory of phase transitions [1,2]
deals with various types of variational free energy, it predicts, in
fact, a single set of the critical point exponents (α¼0, β¼1/2, γ¼1
and δ¼3) and thus belongs to the single “mean field” universal
class [3]. In what follows we use the terminology of the theory of
critical phenomena for the phenomenological theory, although the
latter does not treat critical phenomena properly. The phenom-
enological theory characterizes a system by the critical exponents
both outside and within the critical region, where temperature
behavior of a general function f(t) can be approximated by a simple
power function f(t)¼Atλ, with λ as a critical point exponent, and
t¼ |T-TC|/TC as a dimensionless variable to measure the temperature
difference with the critical temperature TC. A considerable body of
experimental data indicates that the real systems show regular
deviation from the behavior predicted in the framework of the
Landau phenomenological theory, and different universality clas-
ses were found experimentally in such systems. It is convenient to
consider such a discrepancy as caused by two main reasons: (i) the
phenomenological theory neglects critical fluctuations, i.e. one

assumes that the order parameter can be characterized by a single
value at any temperature, and (ii) the above theory uses the di-
mensionality for the fluctuation space lower than the marginal
dimensionality (dodn) (see, for example, [4–6]). These reasons
both relate to the critical fluctuations and are valid in the critical
region. However, the existence of background hetero- and homo-
phase fluctuations [7,8] was not considered in the analysis of the
above discrepancies. Here we highlight yet another reason for the
divergence of the phenomenological calculations and the corre-
sponding experimental data. Specifically, a transcendental relation
between a phenomenological order parameter and the corre-
sponding local atomic variables along with the nonlinear tem-
perature scaling transformation result in a deviation of the ex-
perimental values for the critical exponents from those predicted
by the Landau theory. We show how the nonlinear transformation
parameters depend on the fluctuation properties of the real sys-
tems far beyond the critical region.

2. Microscopic and macroscopic order parameters

2.1. Order parameter space

The Landau theory uses the increment δρ(r) of the probability
density, expressing the difference between the initial density in
high-symmetry parent phase, ρ0(r), and the final low-symmetry
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phase, ρd(r), expanded as a function of the basis functions of an
irreducible representation (IR) τkj of the space group G0 of the
parent phase [1,2]. This expansion has the form:
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The wave vector k, located in the first Brillouin zone, char-
acterizes the translational symmetry of the basis functions kj

iφ (r),
which are the linear combinations of the local atomic functions,
associated with the crystalline structure. The index j labels the
representations kjτ of G0, and the index i (i¼1,…, n) runs over the
distinct basis functions spanning the n-dimensional IR τkj. For a
given j, the set of scalar coefficients kj

iη defines the order parameter
(OP), which describes the total distortion of the initial structure at
the transition. Usually a single irreducible OP breaks the symmetry
in a phase transition, so we only keep index i in Eq. (1).

The linear coupling between ηj and φj(r) in Eq. (1) allows
choosing either of these two quantities as a forming basis of the
relevant IR. As a consequence, the non-equilibrium thermo-
dynamic potential, associated with the transition, ΦL(T,p,δρ), can
be considered as a function of the ηi instead of the φi(r). The OP
components define the order parameter space εn that is irre-
ducible invariant space by the group G0. The δρ variation of the
probability density, associated with a phase transition, can be
considered as a vector in the representation εn-space, and the
components of i

eqη η= { } invariant vector, in the basis of this space,
are the values of the OP that minimize the thermodynamic po-
tential (for details see [9–11] and references therein).

Naturally, we consider the symmetry identity of ηi and φi(r) as
a general property which is also valid for the more general re-
normalization group approach. Indeed, a linear projection operator
of a space group induces basis functions for the relevant IR in the
form of the linear combinations of local atomic functions. The
latter are linked to the phase transition mechanism and were se-
lected as a result of a regular renormalization transformation, se-
parating critical and non-critical variables [6,12,13]. The integral
over the non-critical variables gives the equilibrium part of the
free energy Φ0, and unintegrated part forms the variational free
energy (Landau potential) ΦL(δρ).

The crystal geometry analysis of the different displacive type
structural phase transitions, in particular, martensitic transfor-
mations, shows that there exists a transcendental functional re-
lation between the value of the phenomenological OP ηi and the
magnitude of local atomic shifts, or the periodic character of its
distortions [11,14–16]. Same type of non-linear periodic depen-
dence was obtained for ηi as a function of probability density
variation for the segregation type phase transitions [17]. One can
conclude thus that the order-parameter space, denoted hereafter
sn, in general case (i.e. for the full range of the OP variation),
conceptually differs from the order-parameter space εn used ear-
lier in the description of continuous phase transitions. While εn is
a n-dimensional vectorial space, sn is a n-dimensional closed
functional space with boundary, whose structure depends on the
type of the variational parameters that identify the transition
mechanism [11].

2.2. Phenomenological order parameter and essential variational
parameters

We derive the general form of the function ηi(ξj), where the set
of ηi is a long-range phenomenological order parameter and ξj
represent variational local atomic parameters, i.e. short-range or-
der parameters (variation of probability for the segregation or
disorder-order transformation, magnitude of atomic displace-
ments for displacive type transitions etc.), by considering the

problem in the functional order-parameter space sn.
One makes use of the usual scheme for calculating η(ξ) by

finding the solution of the Euler's variational equation {δΦ/δη
(ξ)}¼0 that minimizes the free energy functional. The appropriate
choice for the latter in the case of continuous phase transition is
the classical Landau–Ginzburg functional
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where the integral is over a volume in the OP space. For the sake of
simplicity we treat a single-component or effective OP, while the
conjugate external field is neglected. The coefficient a1 is con-
veniently assumed to be a regular function of thermodynamic
variables (the temperature, pressure, etc.) and the remaining
coefficients are regarded as temperature- and pressure-in-
dependent parameters. The corresponding Euler's equation takes
the form:
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The boundary conditions are η(0)¼0 and η′(0)¼1. The first
condition indicates a coincidence of the origin points for the
variables η and ξ. The second one ensures their identical behavior
close to TC, i.e. it justifies the change of variables ξ-η in the
Landau theory. The differential Eq. (3) has exact general solution
expressed as

sn k, 40 0η η μ ξ ξ= ⋅ [ ( − ) ] ( )

In the above equation sn[μ(ξ�ξ0),κ]¼snu is the elliptic sine of
Jacobi, and μ and ξ0 are the arbitrary constants [18]. With the
applied boundary conditions, μ¼1 and ξ0¼0. The parameter
κ¼√(a2/|g|) is the modulus of the elliptic integral of the first kind
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The phase diagram of this system can be obtained by mini-
mizing the Landau potential
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where the OP η has the form of Eq. (4). The minimization of ΦL

with respect to the actual variational parameter ξ is expressed by
L L= ⋅Φ
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where cnu¼ u1 sn2− and dnu¼ 1 k sin2 2( − ξ) . Eq. (7) yields three
possible stable states: (i) The parent phase I for snu¼0 (origin of
the space s); (ii) The limit, non-Landau, phase II, given by cnu¼0
(snu¼1) (boundary of the space s), corresponding to the fixed
values η0 of the OP; (iii)’“Landau’“ phase corresponding to the
standard minimization ofΦL with respect to the OP η, whose value
η2¼�a1/2a2 varies between 0 and η0 (interior of the space s). The
function dnu has zeros only if κ¼1, however, even in this case dnu
vanishes simultaneously with cnu and no different solution of Eq.
(7) exists.
The stability condition has the form:
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The resulting phase diagram in the plane of thermodynamic
parameters (a1,a2) is shown in Fig. 1(a). The second-order phase
transition line a1¼0 separates parent I and Landau III phases. The
stability regions of Landau III and limit II phases adjoin along the
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