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a b s t r a c t

We systematically investigate the electron transport through double quantum dots (DQD) with particular
emphasis on the spin-flip scattering of an electron in the DQD. By means of the slave-boson mean-field
approximation, we calculate the linear conductance and the transmission in the Kondo regime at zero
temperature. The obtained results show that both the linear conductance and transmission probability
are quite sensitive to the spin-flip strength when the DQD structure is changed among the serial, parallel
and T-shaped. It is suggested that such a theoretical model can be used to study the physical phenom-
enon related to the spin manipulation transport.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, many efforts have been made to investigate theore-
tically coupled quantum dots (QDs) [1,2]. With respect to coupled
QDs, the wave functions of each quantum dot state can penetrate
into the tunneling barrier and overlap each other. As well as being
a model for studying the physics of strongly correlated electrons,
the coupled QDs are utilized in controllable quantum coherent
systems for spintronic [3] and quantum information processing
devices [4]. In real spin systems, it is difficult to manipulate the
spin-up state and the spin-down state individually. In contrast,
since the coupled DQD system is separated, it is much easier to
control the spin freedom of each dot. As a result, the physical
phenomenon related to the spin-flip which is induced by the spin–
orbit electrons have suggested that it can potentially offer a gate
controllable approach to manipulate the spin [5,6]. Researchers
have detected the spin-flip process in a single proton, a first step
toward precision measurements of the antiproton's spin magnetic
moment [7]. The observed photoelectron spin-flip process in
Bi2Se3 also enables a precision measurement of the spin detection
[8]. All of which indicate the importance of the intrinsic spin-flip
effect in the mesecopical systems.

Due to that the electrons in the QD can flip its spin, a very sharp
Kondo peak emerges in the density of states (DOS) of the QD. The
parameters in the coupled QDs can bemodulated experimentally in a
continuous and reproducible manner, offering an appropriate plat-
form to study the Kondo problem [9]. In particular, the observation of
the Kondo effect in strongly correlated systems has opened a path for
the investigation of the spin-flip effect, which stimulates further
experimental [10] and theoretical studies [11]. When electron–elec-
tron correlations due to the Kondo effect are affected by such spin-
flip effect, the transport properties exhibit remarkable properties
[12]. There have been a number of theoretical works in the DQD
systems. For example, it was pointed out that the spin-flip shows a
splitting effect on the Kondo resonance in the single quantum dot
system [13], whereas such effects do not appear in the DQD system.
The T-shaped DQD is another prototype for the special arrangement
of the DQD which provides an additional path of electron propaga-
tion, but the detailed analysis about the spin-flip effect has not been
done. Thus it is interesting to systematically study how the spin-flip
interference together with the Kondo effect affects characteristic
transport properties in a variety of DQD systems, including the serial
DQD, parallel DQD, and T-shaped DQD systems.

2. The model and method

In this work, we mainly focus on the effect of spin-flip scat-
tering on the electron transport through a DQD system, which is
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shown schematically in Fig.1. The Hamiltonian of the original d
levels of the two dots can be described as follows:

H H H H , (1)DQD T= + +α
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Here HDQD is the Hamiltonian of the DQD and d d( )m mσ σ
+ is the

creation (annihilation) operator of the electron in the QDs with
m¼1,2. tc describes the interdot coupling strength and r is the
spin-flip strength that may cause the spin rotation of an electron
in the QDs. Since the spin quantization axes in the electrodes are
fixed by the internal magnetization of the magnets, an electron is
in a superposition of spin-up (spin-down) states as it tunnels into
(out of) the dot. As a result, the physical phenomenon related to
the spin-flip may be realized in a DQD system. Hα describes the
non-interacting leads with c c( )k kασ ασ

+ the creation (annihilation)
operator of an electron in the lead. HT denotes the tunneling be-
tween the DQD and the lead L R( , )α α = . The tunneling between
the lead and the QDs can be rewritten by an effective strength

V V ( )mm k m m k, ,Γ π δ ε ε= ∑ −σ
α

α σ ασ ασ ασ
⁎ . We first interpolate the serial

DQD and parallel DQD by continuously changing x L R
22 11Γ Γ= =σ σ

while keeping L R
0 11 22Γ Γ Γ= =σ σ as the unity. For example, at x¼0 the

model is reduced to the serial DQD and x¼1 the parallel DQD. We
next change y L R

22 22Γ Γ= =σ σ with the resonance width
L R

0 11 11Γ Γ Γ= +σ σ fixed as unity. At y¼0, the system is equal to the
T-shaped DQD and y¼1 the parallel DQD.

In the following discussions, the intradot Coulomb interaction
U (U- 1) on each dot is assumed to be sufficiently large, so that
the double occupancy is forbidden. An alternative way to re-
present the infinite Coulomb interaction is the conventional slave-
boson mean field approximation [14], where the creation (anni-
hilation) operator of electrons in the dots, d d( )m mσ σ

+ is replaced by
d f bm m m→σ σ

+ + . b f( )m mσ is the slave-boson (pseudo-fermion) annihi-
lation operator for an empty (singly occupied) state. We can thus
model the DQD Hamiltonian as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

H f f
t
N

f b b f h c

r
N

b b f f h c

f f b b

( . . )

( . . )

1
(2)

DQD
m

m m m
c

m
m m m m

m
m m m m m

,
1 1 2 2

,

∑ ∑

∑

∑ ∑

ε

λ

= + +

+ +

+ + −

σ
σ σ σ

σ
σ σ

σ
σ σ

σ
σ σ

+ + +

+ +
¯

+ +

The last term with the Lagrange multiplier mλ is introduced so
as to incorporate the constraint imposed on the slave
particles f f b b 1m m m m∑ + =σ σ σ=↑↓

+ + . In the numerical calculations, we
replace the boson operator by their expectation values
b b b b( )m m m m→ < > = ˜+ + , which results in the renormalized quan-

tities V V bm m m
˜ = ˜

ασ ασ ,t t b bc c 1 2˜ = ˜ ˜ , r rbm m
2˜ = ˜ and m m mε ε λ˜ = +σ σ in the

slave-boson mean-field approximation. The mean-field values of
b ,m mλ˜ are determined by minimization of the free energy due to
the Hamiltonian of the system. We can derive the set of self-
consistent equations according to the equation of motion method
for the nonequilibrium Keldysh Green functions [15]:
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Eq. (3) represents the constraint imposed on the slave particles,
while Eq. (4) is obtained from the stationary condition that the
boson field is time independent at the mean-field level. From the
equation of motion of the operator fmσ [15], we have the explicit
matrix form of the Green function:
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RΓ Γ Γ˜ = ˜ + ˜σ σ σ (n 1, 2= ).

By the Keldysh non-equilibrium Green's function (NEGF)
method, we can further derive the Landauer current formula of
this system

I f f T d( ( ) ( )) ( ) ,e
h L R

2 ∫ ε ε ε ε= ∑ −σ σ (6)
where f ( )L R( ) ε is the Fermi distribution function of the left

(Right) lead and T ( )εσ is the transmission probability per spin given
by T Tr G G( ) [ ]L r R aε Γ Γ=σ σ σ .

3. Numerical results

In this section, we will present the numerical results of linear
conductance and transmission probability for the DQD systems
with the serial, parallel, and T-shaped geometries. For simplicity,
we assume the energy levels for the spin up and spin down are
degenerate ( mn mnΓ Γ˜ = ˜σ

α
σ

α
¯). We deal with the symmetric dots in the
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Fig. 1. A schematic illustration of DQD system connected by the interdot tunneling
strength tc. L R m( , ; 1, 2)mmΓ α = =α represents the resonance width due to transfer
between the m-th dot and the α-th lead. By changing the ratio of tunneling am-
plitudes, we can change the system among the serial DQD (x¼0), parallel DQD and
T-shaped DQD (y¼0).
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