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We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent
linear (tyy, ayx), first nonlinear (fyyy, Byxx), and second nonlinear (¥xyy, ¥yyxx) Polarizabilities of quantum
dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise
has been applied additively and multiplicatively to the system. An external oscillatory electric field has
also been applied to the system. Gradual variations of external frequency, dopant location, and noise
strength give rise to interesting features of polarizability components. The observations reveal intricate
interplay between noise strength and dopant location which designs the polarizability profiles. More-
over, the mode of application of noise also modulates the polarizability components. Interestingly, in case
of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites
greater delicacy in them. The said interplay provides a rather involved framework to attain stable, en-

hanced, and often maximized output of linear and nonlinear polarizabilities.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quantum dots (QDs) are the substances where the process of
miniaturization of semiconductor devices terminates. QDs display
rich nonlinear optical effects which are much more delicate than
the bulk materials. Thus, they have been ubiquitously applied as
an indispensable ingredient in a variety of optical devices. Ex-
tensive study of optical properties of these devices endows us with
lots of important information about their energy spectrum, the
Fermi surface of electrons, and the value of electronic effective
mass. These features have helped QDs earn wide recognition as
high-performance semiconductor optoelectronic materials. How-
ever, QDs are frequently contaminated with dopants during their
manufacture which dramatically alter their properties. As a result
of contamination we envisage introduction of additional potential
to the QD system which invariably interacts with intrinsic QD
confinement potential. The interaction appears to be crucial for
the dramatic change in various properties of QD. A large number of
investigations on doped QD [1-15] therefore run in harmony with
the increasing need of exploring their properties. Within the
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domain of optoelectronic applications, impurity driven modula-
tion of linear and nonlinear optical properties has been found to be
immensely important in photodetectors and in several high-speed
electro-optical devices [16]. A plethora of important works on both
linear and nonlinear optical properties of these structures was
therefore a natural consequence [16-36].

External electric field has often been invoked to elucidate im-
portant aspects related with confined impurities. The electric field
changes the energy spectrum of the carrier and modulates the
performance of the optoelectronic devices. Moreover, the electric
field often reduces the symmetry of the system and leads to
emergence of nonlinear optical properties. Thus, the applied
electric field assumes special attention in view of understanding
the optical properties of doped QDs [37-53].

In some of our recent works we have made detailed discussions
on importance of noise in influencing the performances of QD
devices [54-56]. In these works we have explored the role of
Gaussian white noise on the diagonal components of frequency-de-
pendent linear [54], first nonlinear [55], and the second nonlinear
[56] polarizabilities of doped QD. In the present manuscript we
explore the role of Gaussian white noise on the off-diagonal com-
ponents of frequency-dependent linear (o, @), first nonlinear
(second order) (Pyyy, Pyxx), and the second nonlinear (third order)
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(Yxxyy» Yyyxx) Polarizabilities of doped QD. The off-diagonal com-
ponents require exploration as they interact differently with the
applied field from their diagonal analogs and thus expected to
display significantly distinct features. Of late Sahin made some
important contribution to the third order optical property of a
spherical QD and analyzed the role of impurity [22]. The notable
works of Karabulut and Baskoutas [30] and Yilmaz and Sahin [34]
also deserve mention in related contexts which include the effects
of electric field and impurity. In the present study noise has been
applied to the system additively and multiplicatively [54-56]. The
polarizability components can be computed by applying an ex-
ternal electric field of given intensity to the doped system. We
have put special emphasis on the role of dopant location and the
noise characteristics as they modulate the off-diagonal polariz-
ability components in some potentially interesting manner. The
role of dopant site has been critically explored because of its well-
known influence in modulating the optical properties of doped
heterostructures. In their notable works Karabulut and Baskoutas
[30], and Baskoutas et al. [37] analyzed the importance of off-
center impurities exploiting an accurate numerical method
(PMM, potential morphing method). Very recently Khordad and
Bahramiyan have made important work on how dopant position
affects the optical properties of various QDs [35]. The present
analysis reveals the nuances in the profiles of aforesaid polariz-
ability components as a result of intricate interplay between noise
characteristics and the effective confinement potential of the
doped QD system. The effective confinement potential has a strong
dependence on the site of dopant incorporation and thus the latter
makes a significant contribution in designing the overall profiles of
the polarizability components. The impact of mode of application
of noise (additive/multiplicative) on the polarizability components
has also been critically addressed in the present manuscript.

2. Method

Our model Hamiltonian represents a 2-d quantum dot with
single carrier electron laterally confined (parabolic) in the x-y
plane. The confinement potential reads V(x, y) = %m*cooz(xZ +y2),
where @y is the harmonic confinement frequency. The parabolic
confinement potential has found extensive usage in various stu-
dies on QDs [1,3,4,7-9,20,24,28,38,39], particularly in the study of
optical properties of doped QDs by Cakir et al. [23,24]. A perpen-
dicular magnetic field (B ~ mT in the present work) is also present
as an additional confinement. Using the effective mass approx-
imation we can write the Hamiltonian of the system as
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In the above equation m™* stands for the effective electronic mass
within the lattice of the material. The value of m* has been chosen
to be 0.067mo resembling GaAs quantum dots. We have set
/=€ =mg = dg = 1and perform our calculations in atomic unit. In
Landau gauge [A = (By, 0, 0)] (A being the vector potential), the
Hamiltonian transforms to
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ax = eB/m:c being the cyclotron frequency. Q2 = w¢ + 2 can be
viewed as the effective frequency in the y-direction.

We now introduce impurity (dopant) to QD and the dopant is
represented by a Gaussian potential [57-59]. To be specific, in the

present case we write the impurity potential as

Vimp = %e‘f[(""“’)z”“(y‘yo)z]. Choice of positive values for & and V,
gives rise to repulsive impurity. Among various parameters of
impurity potential (xo, };) denotes the dopant coordinate, Vj is a
measure of strength of impurity potential, and £~! determines the
spatial stretch of impurity potential. Recently Khordad and his
coworkers introduced a new type of confinement potential for
spherical QD's called Modified Gaussian Potential, MGP [60,61]. The
Hamiltonian of the doped system reads

Ho = Hy + Vimp. (3)

We have employed a variational recipe to solve the time-in-
dependent Schrodinger equation and the trial function y (x, ¥) has
been constructed as a superposition of the product of harmonic
oscillator eigenfunctions [54-56] ¢, (px) and ¢, (qy) respectively, as

(%, Y) =Y Gumdn (PX)dhn (q¥), @

where G, are the variational parameters and p = \/mwo/% and
q = m=2/7. The general expressions for the matrix elements of Hy
and Vi, in the chosen basis have been derived [54-56]. In the
linear variational calculation, a requisite number of basis functions
have been exploited after performing the convergence test. And Hy
is diagonalized in the direct product basis of harmonic oscillator
eigenfunctions.

With the application of noise the time-dependent Hamiltonian
becomes

H(t) = Ho + VA(t). (5)

The noise consists of random term (¢ (t)) which follows a Gaussian
distribution (produced by Box—Muller algorithm) having strength
p. It is characterized by the equations [54-56]

(e(t)) =0, (6)

the zero average condition, and

(c()a(t))y = 2us(t — t7), (7)

the two-time correlation condition with an insignificant correla-
tion time. The Gaussian white noise has been administered addi-
tively [Vi(t) = o(t)] as well as multiplicatively [Vi(t) = o (t)(x + ¥)]
[54-56].

The external electric field V,(t) of strength € is now applied
externally where

Va(t) = ex-x-sin(ut) + ey-y-sin(vt) (8)

€x and ¢, are the field intensities along x and y directions and v
being the oscillation frequency. Now the time-dependent Ha-
miltonian reads

H(t) = Ho + V() + V5 (0). )

The matrix elements due to Vi(t) and V,(t) can be readily derived
[54-56].

The evolving wave function can now be described by a super-
position of the eigenstates of Hy, i.e.

vy 0= 6Oy
DERL (10)

The time-dependent Schrodinger equation (TDSE) carrying the
evolving wave function has now been solved numerically by 6-th
order Runge-Kutta-Fehlberg method with a time step size
At = 0.01 a.u. after verifying the numerical stability of the in-
tegrator. The time-dependent superposition coefficients [aq(t)]
have been used to calculate the time-average energy of the dot (E)
[54-56]. We have determined the energy eigenvalues for various
combinations of ¢, and €, and used them to compute some of the
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