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a b s t r a c t

We derive and study equations for dissipative transient processes in a constraint incommensurate charge
density wave (CDW) with remnant pockets or a thermal population of normal carriers. The attention was
paid to give the correct conservation of condensed and normal electrons, which was problematic at
presence of moving dislocation cores if working within an intuitive Ginzburg–Landau like model. We
performed a numeric modeling for stationary and transient states in a rectangular geometry when the
voltage V or the normal current are applied across the conducting chains. We observe creation of an array
of electronic vortices, the dislocations, at or close to the junction surface; their number increases step-
wise with increasing V. The dislocation core strongly concentrates the normal carriers but the CDW
phase distortions almost neutralize the total charge. At other regimes, the lines of the zero CDW am-
plitude flash across the sample working as phase slips. The studies were inspired by, and can be applied
to experiments on mesa-junctions in NbSe3 and TaS3.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction: CDW at a junction

It is supposed that in conventional junction and tunneling de-
vices the applied voltage doesn't modify the electronic states, just
only shifting their positions and fillings of bare ones. But in cor-
related systems, particularly with a spontaneous symmetry
breaking, the electronic spectra are formed self-consistently via
electron–electron or electron–lattice interactions. These effects
can modify the ground state, the spectra and even the very nature
of carriers and collective modes, which are transformed following
changes in concentration of electrons near junctions. As a result,
charge storage and a current conduction become different entities
rather than the same electrons. These effects came to a broad at-
tention only very recently with the goal of controlled phase
transformations at surfaces by the electrostatic doping requiring
for extreme strengths of the electric field [1].

The CDWs are particularly attractive because here the re-
construction of the junction takes place at moderate experimen-
tally attainable electric fields. The problem came to attention first
in theory [2,3], then in experiment [4], and it became a must in

view of decisive experimental demands [5, 6] and in relation to
other surface sensitive experiments [7,8]. The junction re-
construction in CDWs goes via appearance of topological defects
(dislocations [9,10] as electronic vortices, as we shall call them
below) with more microscopic solitons [11] as their cores.

We have already devoted studies and publications [12–14] to
these problems. The numerical modeling was performed by the
energy minimization for ground states under electrostatic voltage,
by solutions of stationary PDEs for a system with running constant
currents, solutions of time-dependent PDEs for transient processes
recovering cascades of multiple vortices with a final stabilization
for a few of them. While a kind of the Ginzburg–Landau (GL) or the
time-dependent GL (TDGL) equations for the complex order
parameter Ψ of the CDW was in the core of the model, they were
greatly complicated in several aspects: the higher nonlinearity of
the TDGL equation itself; coupling of Ψ with the normal carriers n
which bring their own nonlinearity, retardations and dissipation
via the diffusion equation; and particularly coupling to the electric
potential Φ which brings the long range forces. This is the worst
for the numerical work. Still, the simulations were always suc-
cessful to an extent that they could be performed for realistic
physical parameters and in actual sophisticated geometries of
experiments.
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Nevertheless, there is a serious demand for another, further
complicated development which is described in this article and in
[15]. In essence and by definition, the GL approach assumes integra-
tion over fermions (intrinsic carriers) participating in formation and
distraction of the symmetry breaking, so that only Ψ is left explicitly.
Even in statics, the GL equation can be derived for a small gap which
takes place only near the transition line. Moreover, the TDGL equa-
tions, whatever for the superconductivity or for the CDW [16], can be
derived only for a dirty metal when the scattering by impurities
suppresses the quasi-particle gap completely (while still leaving alive
the order parameter amplitude). This is not the regime which we are
interested in and what is demanded by the experiment.

The question is not just about precising some qualitatively
apparent forms and results. The partitions of the collective and the
normal components in densities of the charge and the current
change qualitatively, and that is particularly pronounced near the
cores of moving vortices.

2. Anomalous equations and their interpretation

The CDW deformation ∼Δcos(Qxþφ) is described by the
complex order parameterΨ¼Aexp(iφ), A¼Δ/Δ0 where 2Δ0 is the
CDW gap at T¼0. Two types of normal carriers may coexist with
the CDW: the intrinsic carries nin¼(ne,nh) (as electrons and holes
above and below the gap) and extrinsic ones nex.

Extrinsic carriers do not participate in the CDW formation and
they are coupled with the CDW only via the Coulomb potential Φ;
their potential energy is eΦ. These carriers belong to other elec-
tronic bands like pockets in NbSe3 which example we shall imply.
Their other sources can be non-gaped parts of an incompletely
nested Fermi surface like in TbTe3, etc. Intrinsic carriers exist in all
realizations of, even if at low T they need to be activated across the
gap. Their spectrum is formed by the CDW and their energies are
displaced when the Fermi level EF breathes up and down with
expansions/contractions of φ. Their total potential energy
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adds the coupling with CDW phase deformations. (From now on,
we include the electronic charge e into the potential Φ, all en-
ergies and temperature are measured in units of Δ0, the length
will be still in nm.)

2.1. Equations

We start with the following form of the local energy functional
(see [15] on hints of derivation)
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We should add to that the local free energy of carriers Fex(nex)þ
Fin(A,ne,nh). The dissipative evolution is described by Eqs. gener-
ated from the functional (1):
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Here ξ0¼Δ0/ħvF and γA,φ are the damping coefficients. γφ is
related to the sliding CDW conductivity [12,13] which value fixes

the time scale 10�13 s which will be the unit of our dimensionless
time henceforth.

The Poisson equation for the electric potential is
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where r0 is the Thomas-Fermi screening length of the parent metal
and nin¼ne�nh.

The kinetics of normal carriers is taken in the quasi-equilibrium
approximation.
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Here μ is the electrochemical potential ζ¼ζ(n,T)¼∂F/∂n is the
local chemical potential, s¼(sx,sy) with si�(neþnh) is the aniso-
tropic conductivity tensor.

For boundary conditions, we assume that the normal CDW
stress and the normal electric field are zero. The last arbitrary
condition secures the total electro-neutrality and provides con-
finement of the electric potential within the sample which is
convenient for calculations. The normal flow of the normal current
exists only at two source/drain boundaries. As a whole, the
boundary conditions have a form
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Here ν→ is the unit vector normal to the boundary.
The above Eqs. contain thermodynamic parameters: F and its

derivatives. At a finite temperature T they can be calculated only
numerically, so for the modeling we employed analytical inter-
polating formulas.

For Fin we used the BCS-Peierls form generalized to interpolate
between small and large values of ζ.
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The minimum of F(A,ζ) at A≠0 is erased (as it happens inside
the vortex core) when ζ (hence nin) is above a critical value. ne
(ζ,T )¼nh(-ζ,T) were also given by formulas interpolating between
large and small values of |ζ|.

The dependence ζ(n) or n(ζ) defines dimensionless normal and
collective particle densities:
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NF is is the density of states of parent metal at EF. In the metallic
phase by definition ρn¼1, then ρc¼0, approaching from the CDW
phase as ρc�Δ2.

2.2. Equations anomalies and their interpretation

Notice that the terms with ∂xφ, ∂xxφ and (∂xφ)2 in Eqs. (1), (2),
(4) do not contain the usually supposed factor A2. They are non-
analytic in the order parameter Ψ and cannot be derived pertur-
batively; formally they appear because of the chiral anomaly [15].

Unlike the GL theory, all expressions containing ∂xφ are sin-
gular. Even the innocent Eq. (3) for A is not normal: A couples
conventionally with ∂yφ but there is no complementary coupling
with ∂xφ because there was no cross-term in the energy (1).

But taking all Eqs. in ensemble, we can notice, even if not ex-
plicitly, that the normal counterpart reacts negatively to variations
of φ erasing the bare collective contribution in such a way that in
terms with ∂xφ the factors 1 become ρc¼1�ρn.
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