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a b s t r a c t

We study theoretically helical edge and surface states of 2D and 3D topological insulators (TI) tunnel-
coupled to metal leads and show that their transport properties are strongly affected by contacts as the
latter play a role of a heat bath and induce damping and relaxation of electrons in the helical states of TI.
A simple structure that produces a pure spin current in the external circuit is proposed. The current and
the spin current delivered to the external circuit depend on the relation between characteristic lengths:
decay length due to tunneling, contact length and, in case of 3D TI, mean free path and spin relaxation
length caused by momentum scattering. If the decay length due to tunneling is the smallest one, then the
electric and spin currents are of order of the conductance quantum in 2D TI, and of order of the con-
ductance quantummultiplied by the ratio of the contact width to the Fermi wavelength in 3D TI. A role of
electron–electron interaction is discussed in case of 2D TI, and it is shown that in contrast to the con-
ventional Luttinger liquid picture the interaction can be treated perturbatively. The presence of inter-
action results in suppression of density of states at the Fermi level and hence in decrease of the electric
and spin currents.

& 2014 Elsevier B.V. All rights reserved.

Spin properties of edge and surface states of topological in-
sulators (TI) are of great interest both for fundamental physics and
for potential applications in spintronics [1]. The spin of electrons is
strongly coupled to their momentum giving an idea of generating
spin polarized currents in TI [2–4]. However, it would be inter-
esting and of practical importance to generate not only spin po-
larized currents but pure spin currents as well. The general idea for
generating pure spin current was suggested in Ref. [5]: a Y-shaped
two-dimensional conductor forming a three-terminal junction
with intrinsic spin–orbit interaction was proposed, where one of
the terminals is a voltage probe which draws no electric current,
but the polarizations of incoming and outcoming electrons are
opposite to each other, causing a pure spin current. However, the
particular realization of this system does not relate to a TI. An
example of a multiterminal system involving the edge state of TI,
in which a pure spin current in the external circuit may occur, is
given in Ref. [6]. However, the decoherence and damping induced
by contacts were out of consideration, while we find that damping
and relaxation induced by coupling to a metal contact are very
important. The systems for generating a pure spin current sug-
gested in Refs. [5,6] were mesoscopic and ballistic. It is interesting
to study a possibility to produce a pure spin current also in a 3D TI
where the spin current can be larger as it is proportional to

geometrical dimensions of the sample. In the helical surface state
of 3D TI the physics is more complicated because a finite angle
impurity scattering is not prohibited by momentum-spin locking
and strongly affects transport properties.

Since edge state of 2D TI is a 1D electron state an electron–
electron interaction can play a significant role in electron transport
[7,8]. It is known that 1D systems are usually described by the
Luttinger liquid picture rather than the Fermi liquid picture, and
even a weak interaction dramatically affects electron transport. In
particular, it results in a power-law suppression of density of states
at the Fermi level. However, an edge state with a long tunnel
contact is not a true 1D system since it is coupled to a lead of a
higher dimension, and it is interesting how electron–electron in-
teraction will affect transport properties of an edge state with
tunnel contacts.

In this paper we study an edge state in a 2D TI and a surface
state in a 3D TI coupled to metal leads by tunnel contacts, and we
calculate charge and spin currents in the external circuit. We take
into account the decoherence induced by the contacts and show
that it determines the electric and spin currents in the TI with
contacts. In the case of 3D TI we also take into account a spin
relaxation due to scattering on the impurities in the TI. We find
that the currents strongly depend on relations between the char-
acteristic lengths: the decay length due to tunneling, the length of
the contact and the mean free path. In the case of 2D TI we discuss
the role of electron–electron interaction, and in contrast to [4] we
take into account the finite decay length while considering
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interaction.
Below we set e, ℏ and kB to unity, restoring dimensional units in

final expressions when necessary.
We consider a TI with a conducting helical state coupled by

tunnel contacts to bulky leads made of normal metal (Fig. 1). The
effects we study can be observed in various realizations but we
consider the simplest three-terminal version when one of the
leads is grounded, and the voltage V is symmetrically applied to
the two other leads. In this paper we examine a 2D TI with a he-
lical edge state (Fig. 1a) and a 3D TI cylinder with a conducting
surface state (Fig. 1b). We denote the length of the tunnel contact
to the grounded lead by l0, while l1 and l2 stand for the lengths of
the contacts to the leads with potentials V V /2= ±± .

The total Hamiltonian reads

H H H H .
(1)

TI
i

lead i tun i
1,2,3

, ,∑^ = ^ + ^ + ^

=

Here Hlead i,
^ is the Hamiltonian of the ith lead, HTI

^ is the Hamiltonian
of the conducting state in TI. For the edge state [9–11]

⎛
⎝⎜

⎞
⎠⎟H dx x i v x( ) ( ),

(2)
TI

edge
z x F

( ) ∫ Ψ σ ε Ψ^ = ^ − ∂ − ^†

where v is the velocity of the excitations, Ψ̂ is a two-component
spinor and σ are the Pauli matrices. We do not take into account an
impurity scattering in the 2D case, since the spin-momentum
locking prohibits such a scattering. For the surface state the Ha-
miltonian reads in the simplest case [11,10]

⎡
⎣⎢

⎤
⎦⎥( )H d iv Vr r e r r( ) ( ) ( ),

(3)
TI

s
F z F impr

( )
2∫ σΨ ε Ψ^ = ^ − ∂ × · − + ^†

where ez is a unit vector normal to the surface, Vimp is a random
potential of impurities, and we assume that it is delta-correlated
V V ur r r r( ) ( ) ( )0δ′ = − ′ .

The tunnel Hamiltonian Htun
^ reads

H d d H cR r R R r r( ) ( ) ( ) . . (4)tun
D3∫ ψ Ψ^ = ^ − ^ +†

where dimension D¼1 for the edge state and D¼2 for the surface
state; R( )ψ̂ is the field operator in a lead, the matrix element

R r( )− describes tunneling between the lead and TI. We assume
a site-to-site tunneling tdR r R r R( ) ( ) ( )D(3 )/2δ δ− = −−

∥ ⊥ , where t
is real and does not depend on r , and R( )δ ⊥ selects an average
value of a function at a distance d of the order of inter-atomic scale
near the surface. Here R∥ stands for the component(s) along the
contact, and R⊥ stands for component(s) normal to the contact.

First, we focus on the helical edge state coupled by tunnel
contacts to the leads (Fig. 1a) and consider the case of non-inter-
acting electrons. We start from the Hamiltonian (1), (2), and (4),

and then derive equations for Keldysh matrices [12]
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where GR K A, , are Green functions of the edge state, Σt is a self-
energy describing tunneling from a lead to the edge state. Deriving
an expression for a self-energy we follow Kopnin and Melnikov
[13]. For details one can also refer to Ref. [14], where the self-
energy was derived for helical states tunnel-coupled to a super-
conductor. Finally, we obtain x x x x( , ) ( )tΣ Σδ′ = − ′ , where

⎛
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Here we introduce the tunneling rate d t t / F3
3 2 2Γ πν ε≃ ∼ ,

mp /(2 )F3
2 3ν π= is the 3D density of states.

The Dyson equation for the Green functions Ǧ reads

( )i v G x x x x( , ) ( ) (6)F z xε ε σ Σ δ+ + ∂ − ˇ ˇ ′ = − ′

The left-right subtracted Dyson equation for G x x( , )K can be re-
duced to a kinetic equation for distribution function f by ansatz
G G G f( )(1 2 )K R A= − −

v f x f f( )( ), (7)z x iσ γ∂ = − −

where v2 /γ Γ= is the inverse decay length due to tunneling,
f f V( )i i0 ε= − is the equilibrium distribution function in the ith
lead.

Solving (6) for retarded and advanced components we obtain

G x x G x x
i
v

l
l k L L v

( , ) ( , )
sinh /2

cosh /2 cos ( / )
,

(8)
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F

γ
γ ε

− = −
− +

where l l l l0 1 2= + + and L is the circumference of the edge state.
The solution of (7) can be represented as a sum of equilibrium and
non-equilibrium terms f f f0 δ= + . Non-equilibrium term at the
region x l0 0< < coupled to the grounded lead reads

⎡⎣ ⎤⎦
f

f f f e f e

e e(1 )
,
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where f f V f( ) ( )i i0 0δ ε ε= − − . The charge current flowing through
the edge state is related to the non-equilibrium part of the Keldysh
Green function GK

ne by I i ev G( /2) Tre z ne
Kσ= . Spin current reads

J vs ρ= , where ρ is a linear density of electrons related to the

Keldysh Green function by equation i G( /2) Tr ne
Kρ = − .

The spin current flowing through the grounded lead can be
calculated as the difference of the spin currents in the edge state of
TI at the end points of the contact J J x J x l( 0) ( )s s s 0= = − = . Its
derivative with respect to the applied voltage at low temperatures
T v L/⪡ reads
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where G e h/0
2= is the conductance quantum. Here and below a

spin current is measured in units of /2. In the limit of high
temperatures T v L/> the oscillations are washed out, and the
term in the square brackets should be substituted by l2/(sinh /2)γ

The electric current flowing through the grounded lead
I I x I x l( 0) ( )e e 0= = − = in case of symmetrical geometry l l1 2= , is
determined by the conductance

Fig. 1. (a) Helical edge state of 2D TI coupled to the leads and (b) helical surface
state of 3D TI coupled to the leads.
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