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a b s t r a c t

We develop a theoretical framework for a magnetic breakdown in an array of circular two-dimensional
bands with a finite overlap of neighboring Fermi surfaces due to the presence of a presumably weak
periodic potential, and apply the obtained results to the electron bands in carbon honeycomb structures
of doped graphene and intercalated graphite compounds. In contrast to the standard treatment, in-
augurated more than fifty years ago by Slutskin and Kadigrobov, with electron semiclassical trajectories
encircling significantly overlapping Fermi surfaces, we examine a configuration in which bands are re-
lated in a way that the Fermi surfaces only slightly overlap, forming internal band pockets with areas of
the size comparable to the area of the quantum magnetic flux for a given external magnetic field. Such
band configuration has to be treated quantum mechanically. The calculation leads to the results for
magnetic breakdown coefficients comprising an additional large factor with respect to the standard
results, proportional to the ratio of the Fermi energy and the cyclotron energy. Also, these coefficients
show oscillating dependence on energy, as well as on the wave number of periodic potential. Both
mentioned elements enable the adjustment of the preferred wave vector of possible magnetic break-
down induced density wave instability at the highest possible critical temperature.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since its discovery in sixties, magnetic breakdown (MB) theory
[1] has been an important tool in understanding the influence of
magnetic field on the electronic properties of conductors and
semiconductors with rather small gaps at the Fermi surface. In the
series of earlier works we have analyzed the MB mechanisms for
electron bands of reduced dimensionality, more specifically the
possibility of the stabilization of density wave (DW) ordering in
the external magnetic field through the gain of band energy in-
duced by MB. This kind of DW is possible already in the so-called
anti-nesting regime in quasi-one-dimensional materials [2], in
which MB takes place between equivalent pockets much larger
than the characteristic surface for a quantum of magnetic flux,
σ ≡ eH c/ [3]. Here H is the strength of magnetic field, and ℏ, e, and
c are Planck constant, electron charge and velocity of light re-
spectively. Even more favorable appears to be the ordering with
touching Fermi sheets and largest possible pockets, having a more
subtle mechanism of tunneling due to the internal structure of the
MB barrier [4]. In this work we use previously developed form-
alism to investigate the MB properties of two-dimensional iso-
tropic band dispersions with circular Fermi surfaces. Assuming the

presence of uniaxial periodic potential which induces the forma-
tion of an array of slightly overlapping Fermi surfaces, we calculate
the MB scattering matrix and ensuing electron spectrum, and
apply the general results to the Dirac type of band dispersion
characterizing honeycomb structures in the graphene and inter-
calated graphite compounds.

2. Model

The problem will be here illustrated by a simplified model of
two-dimensional conducting band with a set of circular electronic
orbits encircling the Fermi surface with a radius pF (see Fig. 1(a)).
The extensions to more general band dispersions do not alter the
main conclusions of present analysis. Further on, we assume the
presence of a weak periodic potential with the uniaxial periodicity,

=V V xr( ) ( ), defined by the wave vector = QQ ( , 0). Here we are
interested in the range of values of the wave number Q of the
lattice periodic modulation for which there is a presumably slight
overlap between closed Fermi surfaces from neighboring new
Brillouin zones, leading to the formation of the continuous chain
of overlapping electron orbits in the momentum space [5], as
shown in Fig. 1(a). Simultaneously, the periodic potential lifts the
degeneracy at the crossing points of this chain, by opening gaps, so
that the initial chain is converted into a set of small closed tra-
jectories at the connection points, enwraped between two large
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open trajectories, as shown in Fig. 1(b). Note that, due to the slight
overlap of initial Fermi surfaces, the surface of small trajectory in
momentum space S2 is much smaller than the surface of main
constituent of periodic structure S1, which is in turn approximately
equal to the surface of starting trajectory πpF

2.
With a finite magnetic field H directed perpendicularly to the

plane of electron delocalization, one has the orbital motion of
electrons indicated by arrows in Fig. 1(b). However, in the regions
where trajectories p p( )y x

(1) and p p( )y x
(2) get close to each other in

momentum space the magnetic field also causes the tunneling of
electrons between the lower (1) and upper (2) Fermi surfaces.
Assuming that this MB takes place only in the narrow regions of
connection points designated by shaded areas in Fig. 1(b), the
further analysis can be performed by treating semiclassically the
parts of trajectories outside these ranges, and by calculating fully
quantum mechanically the wave functions in the MB regions,
aiming to determine the effective MB scattering matrix char-
acterizing the present situation. Such configuration of orbits dif-
fers significantly from the standard situation examined in Ref. [6]
in which the surfaces S1 and S2 are of comparable sizes and much
larger than s, so that both can be treated in the semiclassical
manner, while the MB regions between them have much simpler
structure.

The present approach is inevitable for magnetic fields satisfying
the condition σ< ≪S S2 1, where σ ≡ e H c/ is, we remind again, the
characteristic surface for a quantum of magnetic flux. We also
assume that the Larmor radius =R cp eH/L F is much smaller than
the electron mean free path l0.

3. Semiclassical trajectories

In order to solve the problem of semiclassical trajectories we
start from the standard Onsager–Lifshitz Hamiltonian [7]
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for electron wave functions G P P( , )x y0 in the ranges between the
MB regions. Here we use the Landau gauge of the vector potential,

= HxA (0, , 0), as the most convenient one for the geometry of
Fig. 1. Then the y-component of the generalized momentum P is
conserved, =P Py y0. The diagonal matrix elements of the periodic
potential V(x), which introduce simple energy shift into the
spectrum of Eq. (1), will be included into the calculations later in
matching of the present semiclassical solutions with the asymp-
totic parts of wave functions from the MB regions in Fig. 1(b).

The solution of Eq. (1) must also satisfy the periodic boundary
condition = + ⁎G P P G P a P( , ) ( , )x y x y0 0 , where =⁎a Q is the period of
the chained structure in the −P directionx . It reads

⎡
⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥
⎥∫σ

=
| |

− −′ ′G
C

v
i

p P P dPexp ( ) ,
(2)

i
J i

J

i

P

y
i

x y x
( )

( )

0

( )
0

x

where = ∂ ∂v E p/i y at =p p P( )y y
i

x
( ) , with indices i¼1,2 denoting

lower and upper trajectories. Indices =J I II, denote semiclassical
region, along which the integration over Px is taken, that is left and
right with respect to the MB region respectively. At a given energy
ε, the dependence p P( )y

i
x

( ) is determined by the equation

ε=E P p( , )x y , where E P p( , )x y is the two-dimensional electron dis-
persion in the absence of magnetic field. Note that it is negligibly
affected by the periodic potential V r( ) in the semiclassical ranges
of the momentum space.

Constants Ci
J( ) in regions I and II are generally matched via the

MB scattering matrix (see Fig. 1(c)), relating the incoming and
outgoing waves, i.e.
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where | |r 2 and | |t 2 are probabilities that electron gets reflected or
pass through the MB region, satisfying condition | | + | | =r t 12 2 .
Corresponding amplitudes r and t, together with the phase factor
Θ, bear sufficient physical information about the MB process,
taking into account the internal details of the MB barrier in a given
situation. In what follows we calculate them for the MB config-
uration that we have already described and presented as shadow
areas in Fig. 1(b).

4. Quantum mechanical treatment of the MB regions

The wave function Ψ r( )p for the electron in the shaded area of
Fig. 1(b) can be written as a linear combination
Ψ β φ β φ= +r p r p r( ) ( ) ( ) ( ) ( )p p p1 1, 2 2, , where φ = w ir r pr( ) ( ) exp( )s sp p, ,

(s¼1,2) represent states from two bands brought into touch by the
wave number Q, which also determines period of periodic func-
tions w r( )s p, . The Schrodinger equation

Ψ Ψ+ =V x Er r[ ( )] ( ) ( ) (4)0

then reduces to the system of equations for the coefficients β p( )1,2
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where φ φ′ ≡ 〈 | | ′〉V V x( )ss s s , s¼1,2 are matrix elements of the peri-
odic potential V(x). The diagonalized band dispersion for general
initial bands ε p( )1,2 follows from Eq. (5). Here we shall follow for
illustration the case of honeycomb graphene layer with the initial
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Fig. 1. (a) Closed electron trajectories in momentum space, encircling Fermi sur-
faces characterized by pF, are related by perturbation wave vector Q in the way to
slightly overlap, thus forming a connected chain. (b) The perturbation potential lifts
the degeneracy and opens gaps at crossing points, so that the structure attains the
form of periodic set of large surfaces S1 (approximately equal to surface of starting
trajectory) enwrapped between two closed trajectories p p( )y x

(1, 2) , with much
smaller closed trajectories S2 at connection points between them. At these points
(shaded areas in (b)), one has the magnetic breakdown in perpendicular magnetic
field, with probability amplitude r for electron to get reflected, and t to pass
through the MB region. (c) Magnetic breakdown scattering process: Ci

J( ) are con-
stants in electron wave functions for incoming and outgoing electrons (arrows
depict direction of motion), index i¼1, 2 corresponds to trajectory p p( )y x

(1, 2) , while
=J I II, marks regions on the “left” and “right” side of the chosen MB area.
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