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a b s t r a c t

We present the extension of our previous G W0 0 approach to the two-dimensional system of massless
Dirac electrons interacting via the long-range Coulomb interaction. We determine the one-particle
spectral function taking into account only a partially filled linear band above the Dirac point. The electron
self-energy is calculated, paying particular attention to the contribution coming from the collective
plasmon mode through the dynamically screened Coulomb electron–electron interaction. The obtained
results show a dispersing feature in the spectral function and a low energy quasi-particle with the re-
normalized spectral weight. We expect the results obtained to be qualitatively in agreement with
spectral properties of monolayer of MoS2 which has the large direct band gap between the valence and
conduction bands. We also discuss the influence of the underlying substrate on the obtained results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Models of two-dimensional Dirac electron systems are of in-
creasing interest because of their applicability to realistic systems.
In recent years Dirac fermions have been applied to study unusual
properties of a variety of novel materials, including graphene and
newly discovered three-dimensional topological insulators, for
review see [1,2]. Other recent examples of Dirac electron systems
include monolayer of molybdenum disulfide (ML-MDS) [3] and
silicene [4]. Comparing with graphene, the biggest difference in
three-dimensional topological insulators, monolayer MoS2 and
silicene is gapped Dirac electrons found in these materials. Such
Dirac electrons can also be found by placing graphene on silicon
carbide [5], boron nitride [6] and iridium [7], or they can appear
due to intrinsic spin–orbit coupling [8–10]. Interesting is also re-
cently fabricated two-dimensional semiconductor phosphorene
[11,12]. Unlike graphene, phosphorene in its natural form exhibits
the large direct band gap as monolayer MoS2. However, aniso-
tropic band dispersion around band gap distinguishes it from
isotropic two-dimensional MoS2.

Two-dimensional Dirac electron systems have been in-
vestigated by angle-resolved photoemission spectroscopy (ARPES)
measurements that provide a direct probe of the electron spectral
function which takes into account electronic correlations and
comprises collective modes. The present study addresses the role
of collective plasmon mode in the calculation of the spectral
function within the G W0 0 approximation related to ARPES mea-
surements in graphene [13–15] and monolayer of MoS2 [16]. Our

earlier G W0 0 approach to spectral properties of quasi-one-dimen-
sional conductors introduced a wide features into the spectral
function originating from the anisotropic collective modes due to
the finite electron–electron Coulomb interaction [17–19]. Also,the
early G W0 0 approach to the three-dimensional “jellium” model
[20,21] resulted in the spectral function showing the low energy
quasi-particle peaks and additional so-called plasmaron peaks and
features due to the plasmon mode. Analog results were reported
for graphene [22,23] indicating the importance of electronic cor-
relations in this material. The G W0 0 approximation gives the dy-
namical electron self-energy through a product of the non-
interacting Green's function G0 and the dynamically screened
Coulomb interaction W0 obtained in the random phase approx-
imation (RPA) [24]. In this work we present the extension of our
previous G W0 0 approach [17–19] to the two-dimensional system of
massless Dirac electrons with the long-range Coulomb interaction.
More precisely,we determine the one-particle spectral function for
a partially filled linear band above the Dirac point with the elec-
tron self-energy calculated paying particular attention to the
contribution coming from the plasmon excitations through the
dynamically screened Coulomb electron–electron interaction.
These excitations were analyzed earlier in [25] where it was
shown that they have a gapless acoustic dispersion in the long-
wavelength limit. Due to this dispersion the obtained results show
a wide structure in the spectral function with a pronounced
weight indicating the renormalized free-electron band profile. This
behavior is in accordance with earlier results for graphene [13–
15,22,23] and recent results for a monolayer of MoS2 [16] at low
energies.
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2. Green's function

We begin by considering the two-dimensional system of
massless Dirac electrons with a partially filled linear band

= −E v k kk( ) ( )F F above the Dirac point, where k is a wave vector,
kF is the Fermi wave number, vF is the Fermi velocity and the
energy is measured from the Fermi energy =E v kF F F , and the long-
range Coulomb electron–electron interaction V. We determine first
the dynamically screened electron–electron Coulomb interaction
in the long-wavelength limit within the random phase approx-
imation (RPA). The Dyson equation for the screened Coulomb
electron–electron interaction V̄ shown in Fig. 1 reads [26]

ω Π ω ω¯ = + ¯V V V Vq q q q q( , ) ( ) ( ) ( , ) ( , ), (1)

where π ε=V e qq( ) 2 /2 is the bare long-range interaction with ε
being the background dielectric constant equal to the average
ε ε ε= +( )/21 2 between the dielectric constant of a vacuum ε1 and
that of the underlying substrate ε2. It comprises the bare bubble
polarization diagram
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where n k( ) is the occupation function at zero temperature and η
denotes a positive infinitesimal. The final result for the bubble
polarization diagram in the long-wavelength limit reduces to a
well-known expression [25]:
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Then the dynamically screened electron–electron Coulomb in-
teraction in the long-wavelength limit reads
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where its poles are given by the plasmon excitations [25]
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The plasmon frequency depends on the background dielectric
constant. The expression (6) has been written for the massless
Dirac electron model with the spin degeneracy. The degeneracy is
4 for graphene and there is no degeneracy for electron liquid on
the surface of three-dimensional topological insulator. As in
Lundqvist's calculation [20] the main approximation comes from
the neglection of the single particle excitations in the long-
wavelength limit. We note that an analog result was obtained at
low energies in doped graphene [23,27–30] and for electron liquid
on a surface of three-dimensional topological insulator [31], i.e. a
gapless plasmon mode which disperses as ω ∼q q( )pl . The
plasmon in the latter case will merge into the particle–hole
continuum at lower frequency as the dielectric constant for the
topological insulator is much greater than that for graphene.
Moreover, gapped Dirac electrons, as found in a monolayer of
molybdenum disulfide, exhibit also a square root plasmon

dispersion dependent on the background dielectric constant [32]:
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where Δ is a band gap and Δ ≈E2 / 1F . As their energy dispersion of

the conduction band Δ= +E a t kk( ) /4c
2 2 2 2 , where t is the effec-

tive hopping amplitude and a is the hexagonal lattice constant, can
be linearized around the Fermi energy, the approach presented
below for the dressed Green's function also applies to them. A
similar situation is found in silicene, but with the small band gap
[33,34].

Experimentally, the square-root plasmon dispersion was ob-
served in momentum-resolved low energy electron energy-loss
spectroscopy (EELS) measurements in graphene [35,36] and
should be directly observable in analog measurements in a
monolayer of molybdenum disulfide [37]. Moreover, two-dimen-
sional plasmons of massless Dirac electrons were recently ob-
served in three-dimensional topological insulator Bi Se2 3 using in-
frared spectroscopy [38].

In the present work we extend the G W0 0 method of [17] to
calculate the effect of the Coulomb interaction on the spectral
function of two-dimensional Dirac electron band. The Dyson
equation for the dressed Green's function in the G W0 0 approx-
imation comprising the infinite series of the bare bubble polar-
ization diagrams, as shown in Fig. 2, can be expressed in terms of
the RPA screened Coulomb electron–electron interaction and reads
[17,26]
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It contains the corresponding bare Green's function that comprises
a shift of the chemical potential
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Here μ is the chemical potential of the dressed Green's function that is
determined self-consistently. In Eq. (8) we separate the exchange
contribution (including the phase factor with a positive infinitesimal δ)
from the contribution comprising only the sum of the RPA bubble
polarization diagrams. The screened Coulomb electron–electron inter-
action (5) comprising the collective plasmon mode, which enters into
the G W0 0 Green's function (8), will affect the noninteracting Green's
function ω ω η= − − −−G E i nk k k( , ) ( ) [1 ( )]0

1 . We note that Green's
function (8) can be changed by changing the dielectric environment
surrounding the Dirac electron system or by changing the Fermi
energy.

The integrations in (8) lead to the rather lengthy expressions
for Green's function calculated in [39] which we do not reproduce

Fig. 1. The Dyson equation for the RPA screened Coulomb interaction. Fig. 2. The Dyson equation for the G W0 0 Green's function.
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