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a b s t r a c t

This paper concentrates on the study of body harmonic wave propagation in an anisotropic laser-excited
solid in the context of the model based on coupled equations for the displacement and atomic defect
concentration fields. The complex secular equations for transversely isotropic solids are derived and
discussed. It is found, in general, four types of dispersive waves, namely a quasi-longitudinal (QL), two
quasi-transverse (QT) and a quasi-defect wave (N-mode) can propagate in these types of crystals. The
different characteristics of waves like phase velocity, attenuation coefficient are obtained and presented
graphically. It is demonstrated that there is an appreciable variation in case of the QL mode as compared
with QT and N-modes. Some particular cases have also been discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic properties and mechanical behaviors of elastic solids
are significant in the ultrasonic inspection of materials, vibrations
of structures, in micro- and nanotechnologies and various other
fields. Such materials are usually described by equations of linear
elasticity. However, there are materials of a more complex mi-
crostructure: laser-excited solids with atomic defect (vacancy, in-
terstitial atom) generation, integrated-circuits (IC) interconnect
lines with atomic vacancies, granular materials, materials with
voids, etc. The linear elasticity theory concept is inadequate for
describing the mechanical behavior of these materials. It is ne-
cessary to consider the equation describing the changes that occur
at the microscopic level in the condensed medium.

The elastic wave propagating in solids carries information
about distortions of their form and energy and about the energy
losses related to the defect structure; this information is needed
for optical–acoustical diagnostics of various parameters and the
structure of materials. Also the investigation of generation and
diffusion effects in defect's subsystem on elastic wave propagation
plays an important role in understanding many laser-induced
processes in the solids, particularly in the laser fast recrystalliza-
tion, laser annealing, multipulse laser etching, and pulsed laser-
assisted thin-film deposition.

In works [1–3], the classical theory of elasticity has been

extended to isotopic laser-excited solids with atomic defect gen-
eration to describe the excitation of instabilities and self-organi-
zation of various ordered strain-diffusive structures (micro- and
nanosized) on the surfaces and the volume. This theory defect
density includes an additional independent kinematic variable and
reduces to classical elasticity when the defect diffusion equation
and the term related to defect-induced forces in the momentum
balance equation are dropped off. The formation of 1D and 2D
nonlinear localized coupled strain–defect structures due to con-
centration–elastic instability were also considered [4–7]. Mathe-
matical models of the above-mentioned studies were based on
coupled nonlinear equations for the self-consistent fields of the
displacement vector of the medium and atomic defect con-
centration. However, in this theories temperature is only a para-
meter. The theory of mechanical waves coupled to atomic defect
dynamics and including thermal change effects in pulsed laser-
excited solids has been considered by Mirzade [8] and Bargmann
and Favata [9]. Some features of the physical problems coupling
diffusion, mechanics and thermal waves in a geometrically non-
linear isotropic solid has been studied in Refs. [10–12].

Several researchers have investigated the evolution of stress
field due to electromigration in isotropic thin metal films based on
1D vacancy diffusion-mechanical coupled model [13,14]. In this
model the electromigration process is assumed to be controlled by
a vacancy diffusion mechanism, in which the diffusion takes place
by vacancies switching lattice sites with adjacent atoms. A 3D self-
consistent model of stress evolution during electromigration has
been proposed by Sarychev [15]. In this paper, local volume change
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is assumed to be generated by vacancy diffusion and generation
due to electromigration process. The local volume change is then
treated as an analog of thermal strain. The stress fields are calcu-
lated as a result of volumetric strain induced by electromigration.

In Ref. [16] a plane strain formulation has been derived based
on Sarychev's electromigration-deformation constitutive model
[15]. The total strain tensor includes the strain due to mechanical
loading, the strain due to thermal load, and the volumetric strain
due to electromigration. Finite element method is used to simulate
the stress distribution in IC interconnect metal lines during elec-
tromigration. The obtained simulation results are compared
against Blech's [17] experimental results for aluminium lines and
an analytical model by Korhonen [13].

Keeping in view the increased usage of anisotropic materials in
the development of advanced engineering materials, in the laser
additive micro- and nanotechnologies and other fields, the aim of
the present investigation is to study the bulk mechanical wave
propagation behavior in an infinitely extended anisotropic laser-
excited solid with defect generation in the context of coupled
concentration–elasticity theory, developed in Refs [1,2]. According
to obtained secular equation four types of dispersive waves,
namely, a quasi-defect concentration wave (N-mode), a quasi-
longitudinal (QL) wave, and two quasi-transverse (QT) waves, can,
in general, propagate in considered transversely isotropic media. It
is demonstrated that for plane waves propagating in one of the
planes of transversely isotropic elastic solid having defect con-
centration field, only one purely quasi-transverse (QT) wave de-
couples from the rest of the motion and is not affected by the
defect-concentration changes. The other waves are coupled and
get modified due to presence of defects. When plane waves are
propagating along the axis of the solid, then only longitudinal and
defect-concentration waves are coupled, whereas the two quasi-
transverse (QT) wave modes get decoupled from the rest of the
motion. The general characteristics equation has been solved by
using series (perturbation) expansion methods in order to obtain
phase velocity and attenuation coefficient of the waves.

2. Statement of the problem and secular equation

We consider an unbounded, anisotropic elastic solid with mo-
bile non-equilibrium atomic point defects (vacancies and inter-
stitial atoms) generated by external energy fluxes (e.g., pulsed
laser radiation). We use a fixed Cartesian coordinate system xi,
i 1, 2, 3= . Let u x x x t u u u( , , , ) ( , , )1 2 3 1 2 3

→ = and N x x x t( , , , )1 2 3 be the
components of displacement vector and the defect concentration,
respectively, of the medium at time t . There could be two types of
defect but we limit our consideration to one. We investigate the
propagation behavior of bulk mechanical waves, including their
variation in phase velocity and dispersion properties.

The basic governing equations for the displacement and defect
concentration fields for the case of an anisotropic, linear elastic
medium in the absence of body forces, are given by [6,18]:

u c u N , (1)i ijkl k lj ik k, ,ρ ¨ = − ϑ

N Q g rN
.

, (2)i i,= − + −

Q D N Nv . (3)i ik k i,= − +

Here cijkl are elastic parameters; ρ is the density of the medium;
the deformational tensor ikϑ controls the strain–defect interaction;
Q i are the components of the defect flux vector; and Dik is the
diffusion coefficient of the defects. The functions g and r describe,
respectively, the generation and recombination of defects,

depending on strain field of the medium.

( ) ( )g g e r r eexp , exp , (4)ik
g

ik ik
m

ik0 0β β= − ϑ = − ϑ

where e u u( )/2ij i j j i, ,= + are the strain tensor components; g0 is the
thermal-fluctuation generation of atomic defects in the absence of
the strain field ( ik

gϑ is the deformation potential characterizing the
variation of the formation activation energy of defects under the
lattice deformation, k TB

1β =− (T is the absolute temperature, kB is
the Boltzmann constant)); r0

1τ= − is the defect recombination rate
in the absence of the strain field (τ is the defect relaxation time, ik

mϑ
is the deformation potential characterizing the variation of the
migration activation energy of defects under the lattice deforma-
tion). We assume, that g0, T and r0 are constants.

The components of the defect drift velocity vi induced by
strain–defect interaction are

v D F D U D e .i ik k ik k ik jl jl k,
(int)

,β β β= = − = ϑ

We assume that the above constitutive coefficients and the
diffusivity tensor satisfy the symmetry relations: c ciklm lmik= ,

ik kiϑ = ϑ , and D Dik ki= .
In Eqs. (1)–(3) the comma notation is used for partial deriva-

tives and superposed dot is used for time differentiation.
We can express the defect concentration field as N N N0= + *

(N g0 0τ= is a spatially homogeneous solution; N* is a small non-
homogeneous perturbations). Inserting in Eq. (2) and neglecting
the nonlinear terms, we get the linearized equation as

N
t

N D N g e N D e( ) , (5)ij ij ik
gm

ik ik jl jl k i
1

, 0
( )

0 , ,τ β β∂ *

∂
+ * − = ϑ − ϑ− *

where ik
gm

ik
g

ik
m( ) ( ) ( )ϑ = ϑ − ϑ .

Applying transformation,

x x x x x x x xcos sin , sin cos , ,1 1 2 2 1 2 3 3ϕ ϕ ϕ ϕ′ = + ⋯ ′ = − + ⋯ ′ = ⋯

where ϕ is the angle of rotation in the x x1 2− plane, in Eqs. (1) and
(4), the basic governing equations for the coupled displacement
and defect-concentration fields in transversely isotropic solids can
be written as

( )
( )

u c u c u c u c u u

c u u N , (6)

1 11 1,11 12 2,21 13 3,31 66 1,22 2,12

44 1,33 3,13 1 ,1

ρ ¨ = + + + +

+ + − ϑ

( )u c u u c u c u c u

c c u N( ) , (7)

2 66 1,21 2,11 11 2,22 44 2,33 13 3,31

13 44 3,32 1 ,2

ρ ¨ = + + + +

+ + − ϑ

( ) ( )u c c u u c u u

c u N

( )

, (8)

3 13 44 1,13 2,23 44 3,11 3,22

33 3,33 3 ,3

ρ ¨ = + + + +

+ − ϑ

⎡⎣ ⎤⎦
( )N rN D N N D N

g u u u

.

( ) , (9)

1 ,11 ,22 3 ,33

0 1 1,1 2,2 3 3,3β

* + * − + −

= ϑ + + ϑ

* * *

where D Dj ij iδ= and j i ijδϑ = ϑ . In the right part of Eq. (9) we have
ignored (for simplicity) the influence of strain-induced drift of
defects on the behavior of the concentration fields.

For plane harmonic waves, we assume the solution of the form

⎡⎣ ⎤⎦( ) ( )u N u N i x n t, , exp ( ) , (10)k k p pξ ω* = ¯ ¯ −

where ω is the circular frequency (assumed to be real) and ξ is the
wave number (in general complex); ( )u N,k¯ ¯ are the undetermined
amplitude vectors that are independent of time (t) and coordinates
(xp). np (p 1, 2, 3= ) the components of the unit wave normal (n→)
specifying the direction of wave propagation.
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