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a b s t r a c t

To investigate ferromagnetic semiconductors and insulators, such as the famous EuO, EuS, or CrBr3, we
propose a hybridized Kondo-lattice model, where, in addition to the conduction electrons, localized
moments (e.g., the 4f-electrons) are modeled as a strongly correlated band system. The quasi-empty
conduction band is weakly filled due to the hybridization term. This activates the intraatomic exchange
coupling between conduction and localized electrons. Temperature-dependent phase diagrams and
quasiparticle densities of states are presented for various coupling and hybridization strengths. More-
over, the influence of the one-particle energy of the localized electrons E f is discussed. A comparison
with mean field calculations is given at the end of this work.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Collective magnetism requires the existence of permanent
magnetic moments, which arise from either localized or itinerant
electrons. The distinction of the magnetic moment's type is of
enormous conceptual importance: While itinerant electrons cause
band magnetism, particularly known from the classical ferro-
magnets Fe, Co and Ni, and usually examined within the Hubbard
model [1–3], local moment magnetism can be found in insulators
and semiconductors (such as EuO, EuS and CrBr3 [4–6]), in the
huge class of the heavy fermion systems, in diluted magnetic
semiconductors (which are promising candidates for spintronic
applications [7–10]), and also in some metallic systems like Gd.
Such local moment systems are usually described by spin models
(e.g. Heisenberg or Ising model [11,12]) with coupling constants
due to direct exchange or any type of superexchange. It remains an
important aspect of modern magnetism fundamental research to
find a unified theory which depicts the variety of magnetic phe-
nomena. A small step along this path will be presented in this
paper.

Since collective magnetism is exclusively realized in solid state
bodies, whose electronic structure is represented by energy bands
and gaps that consequently determine the magnetic properties, it
seems to be the more natural choice to use band models instead of
pure spin models. In the present work, we propose a band model

that describes semiconductors and insulators, i.e., local moment
systems. For our purposes, the well-known Kondo-lattice model
[13], with local spins replaced by correlated f-orbitals, is a for-
midable starting point as the interaction between subsystems (in
our case: localized and itinerant electrons) may lead to magnetic
ordering. Note, however, that the interaction is of indirect nature
(e.g. Ruderman–Kittel–Kasuya–Yosida interaction [14–16], here-
after referred to as RKKY), thus, in search of spin-ordering effects,
requiring at least a minimum of electrons in each subsystem. The
problem one is now confronted with is that semiconductors, and
insulators likewise, have quasi-empty conduction bands, making
indirect electronic exchange impossible. In our work, we therefore
extend the Kondo-lattice model by a hybridization term, which
gives localized electrons the opportunity to virtually transform
into conduction band electrons and vice versa. This solves the
problem of beforehand absent conduction electrons, hence al-
lowing a virtual RKKY interaction, but also destabilizes the mag-
netic moments in the different subsystems. As we can read off
from our results, the last fact is of great importance for the un-
derstanding of the magnetism found with our model proposed.

The setup of this paper is as follows: In Section 2 we present
the Hamiltonian, which characterizes the many-body problem that
we solve by Green's functions methods in Section 3. Within this
solution, a set of self-energies is required, but so far undetermined.
Approximations to compute the self-energies are presented in
Section 4, finalizing the theoretical framework. The results and a
corresponding discussion are presented in Section 5. A summary is
given in Section 6.
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2. Model

For the above described systems we introduce the following
Hamiltonian H:

H H H H H H . (1)s f f U sf V( )= + + + +

The kinetic energy of the conduction band electrons is concerned
by Hs:

H T c c( ) ,
(2)

s
i j

ij ij i j
, ,

∑ μδ= −
σ

σ σ
†

where ciσ
† (ciσ) are creation (annihilation) operators of conduction

band (s-)electrons at lattice site Ri with spin σ , respectively. The
chemical potential is denoted by μ, and Tij are the usual hopping
matrix elements, which are related to the Bloch energies k( )ϵ via

( )kT
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For low band occupations, a Coulomb interaction between s-
electrons can be neglected safely.

Assuming a non-degenerate f-level E f , the one-particle energy
of the localized f-electrons with creation (annihilation) operators
fiσ

† ( fiσ) is represented by

H E f f( ) .
(4)
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In order to disfavor double occupancies, a large intraatomic Cou-
lomb interaction is taken into account by

H
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,
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where n f ffi i i=σ σ σ
† is the number operator. Since the 4f-wave

functions' overlap is negligible, a direct f-electron exchange is
fairly small and hence not part of the Hamiltonian (1). Note,
moreover, that Eqs. (4) and (5) are only valid for systems with a
total spin of 1/2, thus being an approximation in modeling the 4f-
levels. This simplification is done in order to keep mathematics on
a tractable level, whereas the underlying physical effects are not
expected to be affected significantly.

To allow for magnetic ordering, interactions between conduc-
tion band and f-electrons must be considered. The s–f-exchange is
commonly described by an intraatomic spin–spin-coupling:

SH J ,
(6)

sf
i

i i∑ σ= − ·

where iσ and Si represent the conduction and f-electron spin op-
erators at lattice site Ri, respectively. The coupling strength is gi-
ven by J, where positive (negative) values of J stand for a preferred
(anti)parallel alignment of s- and f-electron magnetic moments.

The last part of the Hamiltonian in Eq. (1):

H V c f f c( ),
(7)

V
i

i i i i
,
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allows for (virtual) electronic transitions from the 4f-level into the
conduction band and vice versa, where V is the hybridization
strength. While the s–f-exchange, Eq. (6), originates from the non-
classical part of the Coulomb interaction between the conduction
electrons and the localized f-electrons, the hybridization term, Eq.
(7), is a one-particle scattering term which mimics, in the most
simple way, the hybridization between the respective bands.
While concrete values might be obtained by standard self-con-
sistent band-structure or constraint RPA calculations, there is a
priori no reason why those couplings should not co-exist.

As a consequence of the hybridization, the respective average

occupation numbers
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are not necessarily constants when varying a model parameter.
Contrary, the total occupation number

n n n (9)s f= +

is kept fixed at a constant value by proper adjustment of the
chemical potential μ. Since needed for later purposes, we also in-
troduce the dimensionless magnetizations ms f, :

m z n
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,

,
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using z δ δ= −σ σ σ↑ ↓.
To fix some of the model parameters, we set the on-site en-

ergies of the conduction electrons to T 0ii = eV. Hence, the con-
duction band center of gravity defines the energy zero. Energy
units are essentially fixed by choosing W 1= eV for the width of
the conduction band. Furthermore, we assume a strong Hubbard
interaction U Wf ≫ .

The one-particle energy of the 4f-levels, E f , is a parameter that
decisively affects the physics of the model. A stable local magnetic
moment on the f-levels is formed in the limit E 0f ≪ and
E U 0f f+ ≫ where each f-level is exactly occupied by one electron.
Here, however, we also consider a parameter regime where E f

comes close to the lower edge of the conduction band. This implies
the presence of charge fluctuations and thereby the hybridization
term, Eq. (7) is activated which eventually generates an effective f–
f magnetic exchange. Note that this implies that the Schrieffer–
Wolff transformation [17] does not apply to this parameter regime.
Consequently, H H Hf f U V( )+ + cannot be replaced by a local anti-
ferromagnetic exchange which would trivially compete (or co-
operate) with Hsf .

It is worth mentioning that the model (1) reduces to the con-
ventional periodic Anderson model if the s–f-exchange, Eq. (6), is
neglected ( J 0= ). On the other hand, for V 0= , the model essen-
tially reduces to a fermionized variant of the famous Kondo-lattice
model.

3. Theory

In order to determine ns f, and ms f, self-consistently, we attack
the many-body problem posed by the Hamiltonian (1) using
Green's function methods. With the definition of the pure one-
particle s- and f-Green's functions:
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as well as with two mixed Green's functions:

( )

( )

P E
N

e c f

P E
N

e f c

( )
1

; ,

( )
1

; ,
(12)

k
k R R

k
k R R

i j

i
i j E

i j

i
i j E

(1)

,

(2)

,

i j

i j

∑

∑

=

=

σ σ σ

σ σ σ

− †

− †

all given in k-space with N being the number of lattice sites, one
easily obtains the following equation of motion:

M. Hänsel et al. / Physica B 461 (2015) 23–3124



Download English Version:

https://daneshyari.com/en/article/1809033

Download Persian Version:

https://daneshyari.com/article/1809033

Daneshyari.com

https://daneshyari.com/en/article/1809033
https://daneshyari.com/article/1809033
https://daneshyari.com

