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a b s t r a c t

Localized photonic modes are studied in a non-ideal chain of coupled microcavities with the use of the
virtual crystal approximation. The approach proves sufficient to elucidate the effects of varying com-
position and nearest-neighbor distances on the spectrum. It permits to obtain the density of states of the
studied quasiparticles as well as the dispersion dependence of collective excitation frequencies on defect
concentration. Based upon the developed description of ideal photonic structures we proceed to study a
non-ideal polaritonic crystal constituted by an array of spatially ordered cavities containing atomic
clusters. Frequency, effective mass and group velocity of polaritons are analytically derived as functions
of vacancy concentration.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Development of optical quantum information processing de-
vices has created an ever-increasing demand for structures cap-
able of “slowing down” the light [1], i.e. of the effective reduction
of group velocity of polaritons. This effect and similar ones occur in
a variety of systems such as coupled optical resonators [2,3], solid
multilayer semiconductor structures [4], bulk crystals with strong
light-matter coupling (GaN, ZnO, see e.g. Refs. [5,6]) etc. There are
a number of theoretical and practical problems connected with
fabrication of polaritonic crystals [7,8], which present a particular
type of photonic crystals [9] featured by a strong coupling be-
tween the medium quantum excitations (excitons) and the optical
field. The key role in decreasing the group velocity of light is
played by the peculiar properties of the so-called “dark” and
“bright” polaritons, which are linear superpositions of the photo-
nic states of external electromagnetic fields and macroscopic
(coherent) perturbations of a two-level atomic medium [7].

An example of polaritonic structure can be given by a spatially
periodic system formed of trapped weakly coupled two-component
atomic ensembles interacting with the optical field in a tunnel-cou-
pled cavity array [10]. A distinctive feature of such a structure is the
capability of polariton confinement, which is quite analogous to light
confinement in photonic crystals (see e.g. [11,12]) and exciton con-
finement in solid quasiperiodic structures [13–15].

An interest for optical modes in microcavity systems was origin-
ally motivated by the advent of optoelectronic devices [16,17] and
has been steadily growing over the recent years. In this context de-
fect-based resonators in photonic crystals deserve special mentioning
[11]. Ref. [18] demonstrated the attainment of a tight binding be-
tween such resonators and quantum dots. Refs. [7,8] gave theoretical
analysis of the formation of solitons coupled to lower-dispersion
branch (LDB) polaritons in a chain of microresonators; the authors
suggest that their results may be of significant importance for
quantum information processing. Recent progress in fabrication of
quality semiconductor microresonators with Bragg mirrors allowed
to attain a Bose–Einstein condensation of LDB-polaritons in quantum
wells embedded in semiconductor microcavity structures (CdTe/
CdMgTe or GaAs) and to explore their superfluidity [13–15].

Based upon the previously developed concepts of ideal polaritonic
structures [7,19] here we investigate the effects of varying eigen-
frequencies and nearest-neighbor distances on the dispersion of ex-
citon-like electromagnetic excitations in a one-dimensional lattice of
microcavities (coupled resonators with no atomic subsystems). Next,
we carry out a numerical modeling of polariton dispersion in a non-
ideal chain of coupled microresonators containing impurity atomic
clusters.

2. Exciton-like electromagnetic excitations in a non-ideal
lattice of coupled microcavities

Unlike in Refs. [7,18,19] they devoted to coupled resonators
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with dopant atoms let us here pose a somewhat different problem.
Namely, we shall examine a one-dimensional array of tunnel-
coupled randomly distributed microresonators of different types
at the total absence of atomic subsystem. Each resonator is as-
sumed to possess a single optical mode. We also account for the
overlap of optical fields, which enables photons to move along the
chain.

Hamiltonian H of the considered system (see Ref. [7]) is written
as

H H H , (1)ph ph int
0= +

where

H E H A,
(2)

ph
n

n n n int
n m

nm n m
0

,

∑ ∑Ψ Ψ Ψ Ψ= = −+ +

Indices n and m numerate the sites (one per each unit cell) of
the one-dimensional resonator chain. En nω≡ ℏ , where nω is the
photonic mode frequency at the nth site (resonator). Quantity Anm

defines the overlap of optical fields of the nth and mth resonators
and therefore characterizes the corresponding excitation transfer.

andn nΨ Ψ+ are Bosonic creation and annihilation operators of the
photonic mode respectively. Hamiltonian (1) is formally identical
to the excitonic one [20], hence it is natural to refer to the con-
sidered electromagnetic excitations as exciton-like.

We assume that the chain of resonators is mainly comprised by
the so-called “normal” resonators with “ordinary” values of En, Anm

while containing a minor admixture of “defect” resonators whose
parameters En, Anm differ from the “ordinary” ones. Such a crystal
admits at least two types of disorderliness: a compositional one
(defined by distribution of different-type resonators over the sites)
and a topological one (defined by varying nearest-neighbor dis-
tances between the sites). Under these circumstances Hamiltonian
(1) is not translation invariant, whereas the quantities nω and Anm

are configurationally dependent. More specifically En depends
solely on composition, while Anm is dependent both upon com-
position and resonator locations.

A general recipe for evaluation of quasiparticle spectra in non-
ideal systems with randomly distributed elements consists in
finding the poles of the configurationally averaged Hamiltonian
resolvent [21]. The latter is translation invariant, which permits to
characterize the corresponding elementary excitation spectrum by
a wave vector k. The necessary calculation can only be carried out
in the frames of a certain approximation specific to the studied
system. A widespread method of computation of quasiparticle
states in imperfect structures is the virtual crystal approximation
(VCA) [21,22], which provides an appropriate tool to clarify the
spectrum transformations caused by defect concentration varia-
tions. Under the VCA the averaged resolvent is identical to the
resolvent of the averaged Hamiltonian Hph . In what follows this
approximation is used to evaluate and analyze the spectrum of
electromagnetic excitations as well as the relevant optical char-
acteristics of the described imperfect lattice.

Since the VCA consists in replacement of configurationally de-
pendent Hamiltonian parameters with their averaged values, Ha-
miltonian of the “virtual” crystal in our case can be written as

H E A
(3)
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Angular brackets in (3) denote the procedure of configurational
averaging, which (on the right-hand side) is carried out over
the composition in the first term and over the composition
and nearest-neighbor distances in the second term (corresponding
index notations are made). Techniques described in Refs.
[19,21,23] permit to obtain the following expressions for the
averaged quantities of interest:
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where Anm T
νμ defines the electromagnetic excitation transfer from

a thν type of resonator at the nth site to a thμ type of resonator
at the mth site of the “virtual” crystal, CC

ν, CC
μ are concentrations

of the thν and thμ types of resonators and C 1s
C1∑ =ν
ν

= and s is the
number of resonator types. Configurational averaging “restores”
the translation invariance of resonator system, which permits to
invoke a wave vector kk ( , 0, 0)= for description of eigenvalues
and eigenfunctions of Hamiltonian (3).

Diagonalization of Hamiltonian (3) via Bogolyubov–Tyablikov
transformation [20] leads to the following expressions for excita-
tion energies and overlap parameters of the optical fields of ad-
jacent resonators:

E k C C E C A k C C C( , { }, { }) ( , { }) ,
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In (6) a C a C n m({ }) ({ })( )nm T T= − , where a C({ })T is the aver-
aged period of the isoperiodic “virtual” one-dimensional resonator
chain, C{ }C , C{ }T are the sets of types and locations of resonators.
From Eq. (5) it follows that the dispersion law k( )ω of electro-
magtnetic excitations in the considered system is determined by
the frequency characteristics of resonators as well as by the ex-
plicit form of matrix A k C( , { })v

T
μ .

To fix our ideas let us examine electromagnetic excitations in a
binary chain consisting of two types of resonators (s 2= ). We as-
sume that they are arbitrarily distributed and separated by the
distances a1 and a2. If so, expression (5) takes the form
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(7)

C T C
v

T C
v

C
1

2

,

2

∑ ∑ω ω= −
ℏν

ν

ν μ

νμ μ

=

Next, the Fourier-transform of the matrix A k C( , { })T
,ν μ appear-

ing in (6) can in the nearest-neighbor approximation [19] be
written as:

A k C A a C ka C( , { }) 2 [ ({ })] cos ({ }) (8)v
T T T=μ νμ

As for the period a C({ })T of the “virtual” 1D resonator chain it is
readily found to be a C C a C a({ })T T T1 1 2 2= + , where the obvious
condition C C 1T T1 2+ = must hold. Dependence A a C[ ({ })]T

νμ , which
determines the transfer probability of electromagnetic excitations
between neighboring resonators can in the frames of the
developed model be written as A a C A a[ ({ })] ( )T 1=νμ νμ

⎡⎣ ⎤⎦a a C aexp ({ }) /T1 1− . Quantities A a( )1
νμ characterize the overlap

of optical fields of neighboring resonators in an ideal chain of
period a1. The latter is taken as the reference one for the sub-
sequent variation of distances. Under these circumstances the
dispersion law k C C( , , )C Tω takes on the form
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where notations are adjusted as C CC C2 ≡ , C CT T2 ≡ .
Numerical evaluation of Eq. (9) requires the assignment

of modeling frequencies of resonance photonic modes per-
taining to the first and the second types of resonators; these
we take to be 2 25.0 THz 157 10 Hz1

12ω π= × ≈ × and

V.V. Rumyantsev et al. / Physica B 461 (2015) 32–37 33



Download English Version:

https://daneshyari.com/en/article/1809034

Download Persian Version:

https://daneshyari.com/article/1809034

Daneshyari.com

https://daneshyari.com/en/article/1809034
https://daneshyari.com/article/1809034
https://daneshyari.com

