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a b s t r a c t

Graphene develops modulated gap, when it is placed on different substrates. In order to study the effect
of Coulomb interaction on the gaps, we propose here a tight-binding model taking nearest-neighbor
hopping integrals in the presence of Coulomb interactions on two inequivalent sublattices of honeycomb
lattice of graphene. Here Coulomb interaction is treated within a Hartree–Fock mean-field approximation
and difference in electron occupation numbers is computed numerically and self-consistently. It is ob-
served that the system develops ferromagnetism at A-site atoms as well as B-site atoms. However this
ferromagnetisms in two sub-lattices are antiferromagnetically ordered. The Coulomb interaction de-
velops a gap near ’K’ point in reciprocal space. The evolution of this gap is investigated in the electron
density of states, energy band dispersion and electron specific heat of graphene.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphene has attracted an enormous research interest [1] be-
cause of its intriguing physical properties [2] such as ultrahigh
electron mobility and very low resistivity, mass less Dirac fermion
[3] and abnormal Hall effect [4]. The unit cell of a monolayer
graphene consists of two carbon atoms at the A and B sublattices.
The band structure of graphene shows that two bands in re-
ciprocal space intersect at two inequivalent points K and K′ called
Dirac points. The valence and conduction bands are degenerate at
Dirac points and hence graphene is an intrinsic zero band gap
semiconductor. Various methods of engineering of a band gap in
graphene have been studied to induce band gap for its application
in making devices. A gap can be induced in graphene by growing
graphene epitaxially on SiO2/SiC sublattice. The interaction be-
tween the substrate and graphene layer can break the A and B
sublattice symmetry and open a band gap. Small band gaps have
been observed, when graphene is grown on substrates SiC, i.e.
0.260 eV [5] and 0.250 eV [6] and gold on ruthenium (200 meV)
[7]. Besides graphene on substrates, large band gaps can be
generated in graphene of the order of several eV by chemical
modifications with hydrogen (graphane) [8] and fluorine (fluoro-
graphene) [9,10]. Alternatively the band gap in bilayer graphene
has been observed experimentally by Ohta et al. [11] using angle

resolved photo-emission spectroscopy (ARPES) and by Zhang et al.
[12] using infrared spectroscopy. By applying electric field per-
pendicularly to the bilayer graphene a tunable band gap of 70–
250 meV [11–15] has been reported in both experimental and
theoretical calculation. This is in agreement with the experimental
observations which show that the external potential difference is
strongly screened with a maximum energy gap of ∼300 meV [16].
It is essential that a technique should be developed for enhancing
these gaps upto the order of 1 eV seen in silicon for application in
digital electronics.

The role of Coulomb interaction in graphene and related sys-
tems provides a long standing problem. The two dimensional
graphene [17,18], systems with a number of adatoms on semi-
conductor surfaces such as Si : X (Si, C, Sn, Pb) [19], Bechgard Salts
[20] polymers [21,22] display strong local as well as nonlocal
Coulomb interactions. It is observed that in graphene the on-site
Coulomb interaction is U t/ 3.31 ∼ and the near-neighbor Coulomb
interactions is V t/ 21 ∼ where t1 is the nearest neighbor hopping
t 2.8 eV1 = [17]. The effective on-site (Hubbard) interaction is
U t3.3 1= in graphene in the close vicinity of the critical value se-
parating conducting graphene from an insulating phase [23]. In
defect free graphene the possibility of magnetisation has been
predicted theoretically. An antiferromagnetic insulating ground
state has been predicted for local Coulomb interaction for
U t4.5AFM 1≥ in Monte Carlo calculation [24–26] and U t2.2AFM 1≥ in
Hartree–Fork theory [24,25]. The nonlocal Coulomb interactions
can enrich the phase diagram leading to topologically nontrivial
phases [27] arising due to a competition between charge and spin
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density wave phases [28,29]. The Coulomb interaction between
massless fermions in pristine graphene remains long ranged and
unscreened. It is currently unclear whether this would lead to
strongly correlated electronic phases like an insulator [28,30] or
whether graphene is rather weakly correlated. The unscreened
long-range Coulomb interaction is shown to be responsible for
many unusual behaviours in graphene [2,31]. The local Coulomb
interaction is crucial for the theory to understand the defect
induced magnetism [32] and Mott transitions on the surfaces
like Si:X.

It is important to estimate the effective strength of Coulomb
interaction acting on the carbon π electrons. The bare on-site
Coulomb interaction in benzene was estimated long ago to be
16.93 eV from the atomic carbon pz orbitals [32]. The weak
coupling perturbation theory yields an effective on-site Coulomb
repulsion of 10 eV for the analysis of optical spectroscopy experi-
ments of poly-acetylene [33,34]. The coupling constant for Cou-
lomb interaction in graphene is described by e v/ F

2α = ϵ with di-
electric constant ϵ arising due to screening by the Fermi velocity
vF. It is observed that for pristine graphene 2.14α = and for gra-
phene placed on a SiO2 substrate, the corresponding 1.02α = [35].
The inelastic X-ray scattering experiments for free standing
graphene suggest a fully screened dielectric constant of 15ϵ =
corresponding to the base value 2.2α = . Cudazzo et al. [36] have
reported a theoretical study of the implications of dielectric
screening for excitonic and impurity states in graphene. Upto now,
the strength of Coulomb interactions in graphene and related
materials remains unclear and controversial – both theoretically
and experimentally.

Earlier we have reported the study of band gap opening in
graphene by a single impurity taking the tight binding model upto
the third nearest-neighbor hopping in the absence of Coulomb
interaction [37]. In the present communication, we study the
effect of Coulomb interaction on the band gap present in the
graphene on substrates. We propose a tight-binding model
Hamiltonian consisting of the site energy of the carbon atoms and
nearest- neighbor hopping of π electrons of carbon atoms taking
into account the substrates and Coulomb interaction effects in
graphene. We solve the model Hamiltonian by Zubarev's Green's
function technique in Section 2. We calculate the band dispersion,
the difference in occupation numbers and density of states in
Section 3. We discuss the effect of Coulomb interaction on the
band gap near Dirac point in Section 4 and finally give conclusions
in Section 5.

2. Theoretical model

Single layer graphene is formed by carbon atoms arranged in a
two-dimensional non-Bravais honeycomb lattice. The distance
between nearest-neighbor carbon atoms is a 1.420 ≃ Å, while the
lattice constant is a a3 0= . The geometry and the 2D-character of
the lattice do not allow the overlap of the pz orbitals of a given
carbon atom and the s, px, py orbitals of its neighbors. The s, px, py
orbitals hybridize to create sp2 bonds and form high energy σ
bands. The π band is created by the overlap of pz orbitals in gra-
phene and this band is responsible for electronic properties. A
simple tight-binding model incorporating only the nearest-
neighbor hopping between adjacent distinct A and B sublattices
provides a good approximation for studying the low energy elec-
tronic excitations and doping in pristine graphene.

Assuming that the electron can hop to both the nearest and
next-nearest-neighbor atoms, the tight binding Hamiltonian for
electron in graphene can be written as
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where ai,σ
† (ai,σ) creates (annihilates) an electron with spin s

( ,σ = ↑ ↓) on site Ri
⎯→⎯

on sublattices A. Similarly bi,σ
† (bi,σ) creates

(annihilates) an electron on sublattices B. Here t1(¼2.5 to 3.0 eV)
is the nearest-neighbor hopping energy, t2 with t t t0.02 0.21 2 1≤ ≤
[37,38] is the next-nearest-neighbor hopping energy and ( )a bϵ ϵ is
the site energy at the sublattice site A(B). Further i j,〈 〉, i j,〈〈 〉〉 and
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are corresponding lattice vectors. Gharekhanlau et al. [39] have
reported the theoretical calculation of electronic band structure of
patterned graphene taking tight-binding approximation for the
dispersion of π and π⁎ electronic bands including upto five nearest-
neighbor hopping integrals. They have patterned the graphene
layers in such a way that carbon atoms are periodically replaced by
vacancies. This type of symmetry breaking has resulted in opening
of gap at Dirac point in graphene. Graphene deposited on SiO2 is
well described by the 2D massless Dirac equation [3]. Graphene
grown on SiC can be described in terms of massive 2D Dirac
electron [5]. Substrate induced potential can break the symmetries
of the honeycomb lattice and generate gaps in the electronic
system. In a graphene-on-substrate system, the electron interacts
with the static potential induced by the substrate. As a result, a
modulated potential, where A site have energy þΔ and B sites
with energy Δ− , leads to the breaking of the symmetry between A
and B sites and gives rise to a gap. Such a symmetry breaking
Hamiltonian is written as

H a a b b
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This system exhibits a band gap 2 Δ and if undoped, has an in-
sulating ground state with the Fermi level lying in the gap.

The effect of Coulomb repulsion is to stop both electrons oc-
cupying the same site. The Hamiltonian describing the Coulomb
interaction with an effective Coulomb energy U is written as

H U n n n n[ ]
(4)

U
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i
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where n n( )i i
α α
↑ ↓ with A B,α ∈ sublattices, represents the occupation

number operator of up(down) spin. For weak coupling, the Ha-
miltonian can be decoupled by Hartree–Fock mean-field decou-
pling scheme, i.e. Un n U n n U n n U n ni i i i i i i i≈ 〈 〉 + 〈 〉 − 〈 〉〈 〉α α α α α α α α

↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓ where
a b,α ≡ corresponding to A and B site interactions. The mean-field

solutions are taken as n n n( )/2i
a

i
b+ =↑ ↑ and n n d( )/2i

a
i
b− =↑ ↑ and this

leads to the condition, n n di
a〈 〉 = +↑ and n n di

b〈 〉 = −↑ where n re-
presents the mean electron occupation and d the deviation from
the mean occupation. Similar expression can be formed for the
down spin electron. The difference (d) and the electron occupation
number (n) are computed self-consistently. After Fourier trans-
formation in momentum space, the total Hamiltonian is given by
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