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In this article we derive the lattice Green Functions (GFs) of graphene using a Tight Binding Hamiltonian
incorporating both first and second nearest neighbour hoppings and allowing for a non-orthogonal
electron wavefunction overlap. It is shown how the resulting GFs can be simplified from a double to a
single integral form to aid computation, and that when considering off-diagonal GFs in the high sym-
metry directions of the lattice this single integral can be approximated very accurately by an algebraic
expression. By comparing our results to the conventional first nearest neighbour model commonly found
in the literature, it is apparent that the extended model leads to a sizeable change in the electronic
structure away from the linear regime. As such, this article serves as a blueprint for researchers who wish
to examine quantities where these considerations are important.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Green Functions (GFs) are useful tools for describing the elec-
tronic structure of materials and various other quantities related to
the electronic density of a material, such as the local density of
states, inter-impurity interactions and scattering processes. A
common strategy is to find a suitable Hamiltonian for the material
and then obtain the system GFs computationally. Although the
result of such an approach is accurate and it can be computa-
tionally expensive and misses the finer mathematical details often
masked by numerical intricacies. Hence Green Functions can be-
come more useful when they can be expressed in a simple
mathematical form. There has been extensive work done on gra-
phene-based materials and the GFs of these systems throughout
the years. In particular, analytic expressions for the GFs of gra-
phene have been derived and used to explain such phenomena as
magnetic coupling between impurities [1,7,8] and Friedel Oscilla-
tions [14,15]. In those references, the GFs were obtained for a
single-orbital tight binding model based on orthogonal states.

In this paper we show how the single-particle lattice Green
Functions can be found for graphene using a second nearest
neighbour non-orthogonal Tight Binding model. It is common in
the literature to find first nearest neighbour approximations, as well
as the assumption of an orthogonal basis for the electron wave-
functions [3-9,11]. Work by Reich et al. [12] showed that this ap-
proximation is only really valid in the linear regime and that an

* Corresponding author.
E-mail address: jalawlor@tcd.ie (J.A. Lawlor).

http://dx.doi.org/10.1016/j.physb.2015.01.032
0921-4526/© 2015 Elsevier B.V. All rights reserved.

improvement can be made by including further interactions. Our
motivation is to improve the previous GF results by accounting for
the extended electron hoppings and wavefunction overlaps. Ex-
tending the model in this way has already shown to be necessary
for, among others, the electronic structure of nanoribbons [16],
tight-binding modelling of impurities using a self-consistent
method [24] and modelling changes in the density of states in the
local region around a vacancy in the lattice [25]. Furthermore we
will show that previous methods for approximating the off-diag-
onal GFs via the Stationary Phase Approximation [18] are applicable
to this extended case also. These approximations of the off-diagonal
GFs improve in accuracy with increasing separations, and as such
are perfectly suited for in-depth analysis of long-range phenomena
in graphene such as the RKKY interaction [6-8] and Friedel Oscil-
lations [14,15], for energies outside the linear spectrum.

The paper is organised as follows. Firstly there is an introduc-
tion to general GF methods, followed by a derivation of the asso-
ciated lattice GFs for graphene in integral form. Finally, we show
how these integrals can be approximated to a high degree of ac-
curacy in the high symmetry directions of the lattice, allowing for
a fully analytic expression of the associated GFs.

2. Methodology
2.1. Tight binding Hamiltonian

To apply the techniques of Green Functions to graphene, we
must first derive a Hamiltonian to describe the system. This can be
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Fig. 1. Schematic of a small part of the graphene lattice showing the primitive
lattice vectors aj = {(3a/2)ﬁ. - (\/ialz)f(} and a3 = {(30/2)5\(, (ﬁa/Z)f(} and the
two atom unit cell enclosed by the greentransparent box. Using these vectors the
location of any unit cell in the lattice is defined as r = ma; + naz where m, n € Z.
The armchair and zigzag directions are indicated by A and Z respectively and will
be used to specify directions for the Green Functions used later in this work. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)

done by applying a second nearest-neighbour tight binding model,
which assumes that electrons can hop from one atomic site to its
first and second nearest neighbours in the lattice. Saito et al. [10]
derived the dispersion relation using first nearest neighbour
hopping and overlap. In this section we will show, in detail, how a
similar approach can be used to obtain the dispersion relation with
the inclusion of the second nearest neighbour interactions, and
further we identify the eigenvectors of this system. The graphene
lattice is composed of two triangular and inter-penetrating sub-
lattices which we will refer to as Black (@) and White (o) and we
choose a 2-atom unit cell as shown in Fig. 1. Our assumption
means that each atom has three first-nearest neighbours belong-
ing to the opposite sublattice, and six second-nearest neighbours
belonging to the same sublattice. The wavefunction overlap is
assumed to exist between first-nearest neighbours only.
This system is described by the real-space Hamiltonian

H= eo[z Ir, o)(r, ol + Ir, OXr, o|]
+ t[z Ir, o)({r, Ol + (r — az, Ol + (r — ay, Ol)
+Ir, O)((r, ol + (r + az, ol + (r + ay, .I]

+ r'[z Ir, o)((r — ay, ol + (r — ay, ol

r

+(r+a; —az, ol +(r+ayel +(r+azel +(r+a—aiel)

+Ir, O)((r + a1, Ol + (r + az, Ol + (r + az — aj, Ol

+(r —ay, Ol + (r — az, Ol + (r + a1 — az, Ol)

(1)

where the vector r is defined as per Fig. 1 and is summed over the
entire system to infinity. The parameters t and t' are negative
energies denoting the first and second nearest neighbour hopping
integrals respectively, and €, corresponds to the on-site energy of

each carbon atom.

Accurate values of these parameters can be found through
Density Functional Theory, and many examples exist in the lit-
erature [12,19]. Numerical calculations throughout this paper will
use units of the first nearest neighbour hopping t = — 1, and using
the parameterisation of Reich [12] gives t' = - 0.037 and
€0 = 0.111. The real-space Hamiltonian can be diagonalised using a
Fourier Transform from real- to reciprocal-space

1 )
Kk, Ay = — ) ekrir, A),
R
with the inverse transform given by
1 )
Ir, A) = — Y e krk, A).
g
Here, N is the number of elementary cells. Such a transform

results in the equivalent diagonalised Hamiltonian in k-space gi-
ven by

A co+t'gk)  tf(k)
H(Kk) =

S B @
where  f(K)=1+eka1 y eikaz  and  g(k) = 2( cos(k. a1)+

cos(k. az) + cos(k. a1 + k. az)) .

2.2. Eigenvalues and eigenvectors of the diagonalised Hamiltonian

The eigenvalues of the Hamiltonian, corresponding to its
spectrum, are found through applying the generalised secular
equation det(l’-} ~ S ) =0.The matrix § is the wavefunction overlap
matrix which can be written explicitly in diagonalised form as

1 sf(k)
sfs(k) 1 )

Here, s is a dimensionless parameter which quantifies the
wavefunction overlap of neighbouring p, orbitals above each car-
bon site in the graphene lattice. For the purposes of later calcu-
lations we will adopt the value of s=0.1 from Reich [12]. This non-
orthogonality of the wavefunctions is commonly expressed
mathematically as

(aldp) =S

where a and b are neighbouring lattice sites. The spectral solutions
to the secular equation are

§(k)=(

€0 + t'g + tif
1 +sifl

€y =

It is straightforward to identify the eigenvectors of the system
via Schrodinger's Equation, IQI*P) = e§|¥’> where ¥ denotes an ei-
genstate associated with A. Assuming I¥) = (/’:;) gives the matrix
equation:

eo+t'g tf Aq 1 sf)(A
=€, .
tf+ eo+ t'g )\ Az “\sf+ 1)\ Az
Solving this and normalising through the requirement (%1% ) = 1
we find

1 1
) = ﬁ(ie"‘/’)
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