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A novel method to calculate the quantum transmission, resonance and eigenvalue energies forming the
sub-bands structure of non-symmetrical, non-periodical semiconducting heterostructure potential has
been proposed in this paper. The method can be applied on a multilayer system with varying thickness of
the layer and effective mass of electrons and holes. Assuming an approximated effective mass and using
Bastard's boundary conditions, Schrédinger equation at each media is solved and then using a confirmed
recurrence method, the transmission and reflection coefficients and the energy quantification condition
are expressed. They are simple combination of coupled equations. Schrédinger's equation solutions are
Airy functions or plane waves, depending on the electrical potential energy slope. To illustrate the fea-
sibility of the proposed method, the N barriers — (N—1) wells structure for N=3, 5, 8, 9, 17 and 35 are
studied. All results show very good agreements with previously published results obtained from applying

different methods on similar systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The interest in artificial multilayered semiconducting struc-
tures stimulate the speedy development of new and fast functional
devices. This provides an increasing impulsion on the compre-
hension of the quantum-tunneling problems [1,2]. Both theoretical
and experimental studies and applications of the resonant tun-
neling phenomenon are very interesting subjects. In the case of
double-barrier structures, this phenomenon has been studied by
many researchers during the last twenty years [3-5]. For the
transmission coefficient across arbitrary potential barriers, a one-
dimensional matrix method based on a multistep potential ap-
proximation and a multistep electron mass are developed [6].
Multiple-barriers resonant tunneling has been encouraged since
the original work of Tsu and Esaki [1] and Chang et al. [7]. Their
studies are motivated by their wide applications in high speed
electronic devices (lasers, modulators, photodetectors, and signal
processing devices). Bloch theorem allows the study of ordered
systems which are distinguished by their periodicity [8]. The case
of disordered superlattices is very hard since the translation
symmetry of the system is broken [9-13]. Ko and Inkson devel-
oped a scattering-matrix formalism to study electron transmission
coefficient for nonperiodic semiconductor heterostructures [14].
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The transfer matrix method was used by Jatindranath [15] to solve
the time independent Schrédinger equation, using the same
method Simion et al. [16] studied the resonant tunneling in mul-
tilayered heterostructures, and in the same way Fedirko et al. [17]
developed an efficient approach for computer simulation of sta-
tionary scattering and tunneling transfer across one-dimensional
potential barrier. Resonant tunneling in electrically biased multi-
barrier systems has been intensively studied [18-27] by a com-
putational model using the exact Airy function formalism and the
transfer-matrix technique. These multiple applications of the
transfer matrix method proved its very large magnitudes, how-
ever, such method involves some difficulties in the mathematical
derivation and programming especially for beginners. The argu-
ment of the Airy function contains parameter field in the de-
nominator, then the low voltage area is generally not included in
the calculations based on Airy functions and some results are lost.
If necessary, we use the asymptotic form of the Airy functions and
their derivatives [18]. Asenova et al. [28] studied the tunneling and
current density in short period strained AIN/GaN superlattices.

Maiz et al. [29-31] proposed a simple method to calculate the
band structure of nonperiodic multilayer unbiased semiconduct-
ing heterostructures and used an airy function approach to study
quantum anharmonic oscillator. Maiz [32,33] applied his method
to calculate the energy levels for electrons, holes and deduced the
transition energy.

This paper is organized as follows: in Section 2 we introduce
our new method for the calculations of the quantum transmission
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and reflection coefficients across electrically biased multibarrier
systems and the energy eigenvalues. In Section 3 this novel
method is applied to N barriers — (N—1) Wells structure (N=3, 5,
8,9, 17 and 35). Results are presented and discussed in Section 4.

2. Theoretical approach

2.1. Analytical forms of the quantum transmission and reflection
coefficients

As shown in Fig. 1a, we have considered a general case of a
quantum heterostructure constituted by (n + 2) semiconductor
layers. Table 1 shows the characteristics of the different layers. For
the ith semiconductor layer SCi, the thickness and the electron
effective mass are designed respectively by h; and my, where mq is
the free electron mass. The Schrédinger equation for different
layers is given by

2
¥ _ K%, forx<0
ox?
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O _Kew for xit <x<x;
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T";:Kﬁﬂvfnﬂ for x > xn )
where K& =2mg(W - E)/R2, K7 =2my(Vi(x) - E)/n?, and

I(I%‘F 1=2mg 1(Vag1 - E)/n2.

For xi-1 <x <x;, the linear potential energy is given by:
Vi(x) = V(xi—1) + eSi x = Vi_1 + eSix, where x denotes the distance
from the interface x;_;. Here S; is the slop of the electrical potential,
e the electron charge and E the incident electron energy. The
thickness of the SCi layer is h; = (x; — x;_1). The electron motion in
the plans of layers is not taken account in this study. The general
solution of the one-dimensional Schrodinger's equation ¥ (x) for
an electron with incident energy E in the SCi layer can be ex-
pressed as a linear combination of two functions ¢; and ¢; as

F(x) = aidi(X) + i (X) (2)
where «; and g; are constant and:

“* for linear potential (S; # 0): ¢;(X) = Ai(X) and ¢;(X) = Bi(X)
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Fig. 1. (a) Potential energy profile of multilayer system to study the transmission
phenomena. (b) Potential energy profile of multilayer system to study the energy
bound states.

Table 1
Characteristics of a (n+1) layers semiconducting system.

Layer  Effective Thickness  Potential Barrier height difference
index  mass (mp) (nm) slope (V/

nm)
0 mg ho So=0 v (0)
1 my h S Vi=V(0) + eS1x
i my hi Si Vi(x) = V(xi-1) + eSi(x — xi-1)
n+1 mg, hn Sn+1=0 V(xn)

X = (2ms112)'P (i + eSix - B)I( - i 2P

* for constant potential (S;=0):4(X)=exp(-X) and
#i(X) = exp (X) where X = Kix, and K? = 2my(V; — E)[#? is the
modulus of the wave vector.

For x <0, the solution of the Schrédinger equation is
¥ (X) = a0gho(X) + Powo(X), with ¢g(X) = e 0%, g, (X) = efox and
ap # 0. However, for x > 0, the solution of the Schrédinger equa-
tion is ¥n41(X) = ant 1,1 (X) With ¢, q)(X) = eXn+1x, since there
is no incoming wave.

According to Bastard's boundary conditions [34], the wave
function and its first derivative divided by the effective mass must
be continuous at each interfacex;:

F(Xiv1) = ¥ie1(Xip1) and ¥ (xip1)/my = ¥4 1 (Xie1)/my, 4 (3)

where the prime denotes the first derivative with respect to x.
Using this notation %(x;) = ¥;(x;)/mz, one can write Bastard's
boundary condition at each interface as

¥ (Xir1) = ¥e1(Xiz1) and F(Xip1) = F1(Xip1) (4)

Writing this previous condition at each interface leads to the
following system of coupled equations:
a0¢9(0) + Bopo(0) = a1¢1(0) + p1901(0)
a0do(0) + Bodo(0) = a11(0) + p151(0)

aigi(hi) + pigi(hi) = ai+16i41(0) + i 19:41(0)
aigi(hi) + igi(hi) = ais1iy1(0) + Biy15i41(0)

angpn(hn) + B (hn) = ans1n,1(0)
andy (hn) + fadn(hn) = an+1dhp41(0) (5)

The expressions of ajand g; as a function of a;_jand g;_; are
given by the following equations system:

a1£24,(1, 0,1, 0)

= 2024,(0, 0, 1,0) + $p2,,(0, 0, 1, 0)
$12,4(1,0,1,0)

= @0249(0, 0, 1, 0) + f2,4(0, 0, 1, 0)

Jaif24,(i, 0,1, 0) = ai-192, (i = 1, hi1, i, 0)
+ Bis192pp(i = 1, hi_1, 1, 0)

BiQp(1, 0,1, 0) = ai_1024(i = 1, hi_1, 1, 0)
+ Bi1824p(i = 1, hizq, 0, 0)

ans1Q2¢,(n + 1,0, 0, hy) = anQy,(n, hy, 0, hy)
ant18245(n + 1, 0, 0, hy) = ,2,4(n, hy, 0, hy) (6)
where Qxy(a, b, ¢, d) = Xq(b) x Y:(d) — Xa(b) x Y:(d).
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