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a b s t r a c t

The impurity effects of the transverse Ising spin model with a magnetic impurity are investigated via the
correlation function and entanglement on the basis of an exact solution. The non-analytical transition
point from an ordered phase to a disorder phase is significantly shifted by the impurity coupling with
local host spins. The maximal entanglement point which usually appears around the critical point shows
strong dependence on the impurity coupling strength with local host spin and the independent trans-
verse field upon the impurity itself. Quantum entanglement in disordered spin phase is much stronger
than that in ordered spin phase. The exact concurrence of impurity spin with local host spin suddenly
increases to a large value from zero at a threshold value. The maximal entanglement point between
impurity and local host spin increases as the impurity coupling strength increases. So the impurity
coupling strength and local transverse field on the impurity can control position of critical point and
maximal entanglement point.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Non-thermal physical parameters can control the quantum
phase transition induced by quantum fluctuation at zero tem-
perature [1,2]. The most frequently investigated non-thermal
parameter is quantum entanglement of many body system. As
revealed by many recent researches on quantum models of spin-1/
2 chains [3–5], entanglement act as a critical ingredient for the
occurrence of quantum phase transition. Quantum entanglement
in condensed matter system also provides a promising physical
implementation of quantum information theory [6–8]. Quantum
entanglement in quantum many body system with impurity de-
monstrates many interesting phenomena since a few impurities
can induce a significant transformation of magnetic order in dif-
ferent quantum phases [9–12]. Even if the impurity is a non-
magnetic particle which does not break spin-rotational symmetry,
such as a random bond, an interstitial spin or a vacancy, the highly
degenerated states of the pristine system are still locally distin-
guishable [13].

Recently there is an increasing numerical research interest on
quantum entanglement of impurity system [14–18]. Osenda et al.

numerically studied an anisotropy XY model with an impurity in
periodic boundary condition, it shows that the entanglement
strongly depends on the anisotropy parameter and the impurity
parameter [19]. Wang investigated an XY model with an impurity
in open boundary condition by numerical method, and found that
the entanglement between the impurity and the nearest neighbor
host admits a threshold value which depends on the impurity
strength [20]. LeHur studied the impurity entanglement in spin-
boson model using bosonic numerical renormalization group
method, it exhibits a second-order quantum phase transition [21].
Quantum Monte Carlo method and the density matrix re-
normalization group method also made progress in studying
quantum entanglement of impurity system [22,23].

Despite the rapid development of numerical research on en-
tanglement of impurity system, the theoretical research based on
exact solution of quantum impurity system is rare due to the high
difficulty of finding an exact solution of quantum impurity system.
The latest progress on the exact solution of quantum impurity
problem is made in 1984 by Andrei and Johannesson, they found
the integrable model of the Heisenberg chain with impurities in
periodic boundary condition [24]. An impurity of spin S 1/2> is
embedded in a spin-1/2 Heisenberg chain. The exact solution was
derived by Bethe Ansatz [24]. However this method for exact so-
lution based on Bethe Ansatz is not suitable for two or three di-
mensional Heisenberg model. It only works for one dimensional
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chain.
In this paper, we propose an exact method for solving spin

models with impurity. By introducing a proper wave function the
information of impurity site can be expressed by other sites, so
this method not only works for one dimensional spin chain, but
also can be generalized and applied to two or three dimensional
transverse Ising model. The general procedure is first to transform
the Pauli spin operators to Fermi operators, then express the wave
function of impurity by a displacement quantity. Based on the
exact solution of transverse Ising model, we computed the spin–
spin correlation both in short and long-range order, and the en-
tanglement of the ground state. The impurity spin produces a
small disturbance to the short and long-range order near the cri-
tical point, but it does not change the short and long-range order
transition in the transverse Ising model. The entanglement be-
tween the impurity and the analysis of neighbor host shows sin-
gular behaviors at a threshold value of impurity parameter. This
threshold value can be reduced by the impurity strength. While
the magnitude of the small entanglement peak can be reduced by
the local transverse field of impurity.

The structure of this paper is as follows. In Section 2 the exact
solution of this model is outlined. The short and long-range cor-
relation functions are considered in Section 3. The nearest-
neighbor entanglement is calculated in Section 4. In Section 5 we
discussed the effect of impurity on short and long range order and
some outlooks for the future.

2. The quantum impurity model

An impurity spin is introduced into the transverse Ising model
with periodic boundary condition:
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Here the index of the spin operators i and j could be two dimen-
sional spatial index and three dimensional index, here we use a
single letter for brevity. x y z( , , )jσ α =α is the Pauli matrix which
indicates the host sites for j N1, ,= … , and S x y z( , , )0 α =α in-
dicates a spin-1/2 magnetic impurity at the zeroth site, h0 refers to
the local transverse field of impurity. The interaction strength
parameters are renormalized by spin coupling coefficient J. In the
following text, h J/λ = indicates the competition between the Ising
coupling and the transverse field. Without losing the generality,
we set J J JL R imp= = and J J/impγ = to express the impurity strength.
The Hamiltonian equation (1) is diagonalized by Jordan–Wigner
transformation [25] to express Pauli operators by Fermi operators
[26,27]. On the basis of Jordan–Wigner transformation, we intro-
duce the Bogoliubov transformation as follows:
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where ,k kη η† are fermionic quasi-particle operators with quasi-
momentum k, c c,j j

† are Fermi operators in Jordan–Wigner trans-
formation, and g h,kj kj should be complex in general. Then we can
derive a compact Hamiltonian:
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where Ak is the normalization constant, j denotes the location of
spin site. The displacement quantity φ is introduced as the func-
tion of k to include the influence of impurity. So the element (0)kΦ
of the wave function as an unknown parameter can be expressed
by other elements. If we define j g h j g h( ) , ( )k kj kj k kj kjΦ Ψ= + = − ,
and combine the trial wave function equation (4) into the
eigenvalue equation (3), we get the energy spectra and the zeroth
order wave function (0)kΦ :

k h J hJ k( ) 2 2 cos , (5)2 2Λ = + +

hJ N h J

h h J J hJ k
(0)

( ) (1)

2 cos
.

(6)
k

L k R k

L

0

2
0
2 2 2

Φ
Φ Φ

=
+

− + − +

Here the wave vector k is determined by the secular equation
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The three parameters in the secular equations are
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The displacement quantity e F k F k( )/ ( )i = − −φ also depends on
these three parameters above as well as the Ising coupling
strength, F k be ae hJe( ) 4ik ikN ik2= + + . The ground state energy di-
rectly reads E k( )k0

1
2

Λ= − ∑ . The excited state above ground state
can be interpreted as fermion excitation [28].

3. Effects of impurity on short range and long range order

We first study how the short range and long range order
parameter behaves at different impurity coupling strength. The
spin–spin correlation function between two spins separated by
arbitrary distance is calculated [26,29], x y z( , , , )i j i j,ρ σ σ α β= 〈 〉 =αβ α β

, i
z

i
zρ σ= 〈 〉. The spin–spin correlation functions are given by [26]
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From the inverse transformation of ,k kη η †
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