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The behavior of multiple quantum well GaAs/Al,Ga;_,As semiconductor superlattices with different
dielectric interfaces are considered under magnetic and electric fields perpendicular and parallel to the
superlattice axis, respectively. The parabolic confining potential well was varied with the compositional
rate of the Al,Ga; _,As barrier. Taking into account intrasubband and intersubband transitions and using
random phase approximation, the density-density correlation function is calculated as a function of the
magnetic field strength, compositional rate, and averaged electric field strength over the quantum well.
In this way, the dispersion of the surface and bulk state energies are obtained. The Raman intensities for
these states are also obtained as a function of incoming light energy for various averaged electric field
strengths over the quantum well.
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1. Introduction

Studies of semiconductor superlattices fabricated by advanced
growth technologies have recently been of great theoretical
and experimental interest [1-12]. A GaAs/Al,Ga; _,As superlattice
[7,9,10,12] consisting of n-GaAs polar semiconductors separated
by Al,Ga; _,As barriers is a way of tuning the properties of a quasi-
two-dimensional electron gas within a quantum well. In order to
study the electrical and optical properties of such superlattices, it
is important to understand the possible collective excitations
found in inelastic light scattering experiments [13-17] and the
observed dispersion relations of surface and bulk modes. These
studies have mainly been restricted to systems under applied
magnetic fields. A more systematic and theoretical investigation of
the properties of superlattices in the simultaneous presence of
magnetic and electric fields is needed.

The purpose of this work was to investigate the electronic
collective modes of GaAs/Al,Ga; _xAs semiconductor superlattices
under magnetic and electric fields, parallel and perpendicular to
the superlattice axis, respectively, while also tuning the parabolic
confining potential well by changing the compositional rate of
the Al,Ga;_,As barrier [18]. Using a model system, we obtained
the dispersion relations for bulk and surface plasmons, due to the
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intrasubband and intersubband transitions, as a function of mag-
netic field strength, compositional rate, and averaged electric field
strength over the quantum well [12]. We also obtained the Raman
intensities expected for these bulk and surface plasmons as a
function of incoming light energy for the various averaged electric
field strengths over the quantum well.

In Sec. II, we present an idealized model for the dependence of
the parabolic confining potential well on compositional rate of the
Al,Ga;_,As barrier under magnetic and electric fields. Using the
random phase approximation for a semi-infinite superlattice, the
density-density correlation function is derived in Sec. Ill, which
includes a calculation of intrasubband and intersubband scattering
of incoming light as a function of magnetic field strength,
compositional rate, and averaged electric field strength over the
quantum well. In Sec. 1V, the dispersions of bulk and surface
plasmons are calculated as a function of magnetic field strength,
compositional rate, and averaged electric field strength. In Sec. V,
the Raman spectra of bulk and surface plasmons are calculated for
various averaged electric field strengths over the quantum well.
Conclusions are given in the last section.

2. Model

A simple model for a multiple quantum well (MQW) in the
GaAs/Al,Ga; _,As superlattice system consists of a parabolic con-
fining potential well in the z-direction, parallel to the superlattice
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axis, and assumes free electron motion in the x and y directions.
When n electrons per unit cell occupy a quantum well, they move
in response to an external dc bias voltage. In this calculation, we
assume an averaged effective electric field [12] over the entire
quantum well. This assumption is valid since the Thomas-Fermi
screening length [19,20] of 6.46 nm, calculated for a well width of
L=30 nm, electronic density n, =7.7 x 10" cm~2, and effective
electron mass mgy = 0.0665m, where m, is the bare electron mass
[7,9,10,12,16], is much smaller than the quantum well width. In
the presence of an averaged electric and a static magnetic field, the
one-electron Hamiltonian in the quantum well is expressed in a
unified manner as [12]:

1/m; 0 0
H= 1[?+3X] 0 1/m O [?+eﬁ] +1m1w222 +eF x Z,
2 2
0 0 l/m,
(1)

where F is the averaged electric field strength over the quantum

well, mw,2z2 /2 is a parabolic potential well, P is the momentum
—

operator, A is the vector potential for constant magnetic field

— —
B=V x A, and m; and m; represent the transverse and the
longitudinal mass components, respectively. For a magnetic field

_B) =(B,0,0) in the Landau gauge X = (0, —zB, 0), the Hamiltonian
under static magnetic and electric field perpendicular and parallel,
respectively, to the superlattice axis can be rewritten as:
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where . = eB/m; is the cyclotron frequency, 2% = w? +mw:?/my,
M =mQ,? /o?, zo=(pywc—eF)/(m;?), and p, and p, are the
x- and y-directional momentum operators, respectively. The
eigenfunctions of Eq. (2) have the form exp(iq,x)exp(iq;y)p(z —2o)
with g, = (w;/€;)q,. Here g, and g, are the quasi-continuous wave
vectors in the x and y directions, respectively. The ¢(z) are the
eigenfunctions for a simple harmonic oscillator. The energy
eigenvalues are:
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where n(=0, 1,2) denotes the quantum number and V4 = F/B. The
cyclotron radius zp decreases with increasing magnetic field
strength B and increasing averaged electric field. The confinement
frequency @, in Eq. (3) satisfies the condition 1.247x/2.0=
m,_Qf(L/Z)2 /2 with the compositional fraction x of the Al,Ga; _As
barriers [18]. The direct energy gap is given by: E,=1.424+
1.247x eV. Using this notation, we assume up to a third subband
level with E, = (n+(1/2))2£, and a maximum well width L for the
parabolic confining potential.

3. Density-density correlation function

We consider a MQW superlattice consisting of N unit cells, in
which there is an electron layer in each cell. The particle state in
the unit cell can then be assumed to be of the form:

Ignl) = expli(qyx +qy¥)len(z — 2o — la)exp(iq,la), 4

where ¢(z—zp—Ila) is the electron wave function in the Ith
quantum well, which is chosen to be real, and I(=0,1,..,N—1)
is the cell index. The density-density correlation function
T1(q, w,z,2') calculated by Hawrylak et al. [11] for a semi-infinite

MQW superlattice can be obtained from Eq. (4) as:
MN@wzz)= ¥ ¥ Mm@ DDy @Ppmry (@), (5)

' mav 1L
where Dy, (2) = ¢} (D, (2)exp[—iq,(I-1)al. The quantity
ITwwmm(q,,q,) obtained by Fourier transform of the quantity
ITnwmm (L1) in Eq. (5) can be expressed in matrix form as (q,q,),
which satisfies an integral equation in the random-phase approx-
imation: (q,,q;) =%q,q +X¢.°V(q,.q9"2)(q"2.q;). Here, © is the
layer-independent polarizability of the noninteracting system,
expressed as ngmann,(smm,. V(q,.q;,) is the Coulomb interaction
between layers and is decomposed in the usual way through
Fourier transform: V_ . (LI)= INAZL] J55dz [ —8®dz® .y (2)

nnrs nn I
[exp(—qlz—Z'D+a1exp(—qz—2)NPyp (Z). This expression for
V(q,.q,) also takes into account the effect of image charges and
eigenstates in the wells [11] through the parameter &, defined
as the distance from the first layer to the interface. Here, q=
(@2+q,2)'%, a1 =[(e—e0)/(e+e0)lexp(—25q). and V,=2re? /eq.
The bulk and surface parts of this expression for the Coulomb
potential are:

VA(q,) = sinh(ga)/P(a,) — (@8 . @ +2°), ©®
and
V3(q,.q) = W[Q“ +a'?exp(—iq,a)

+a!exp(iq,a) +a**exp(i(g, —q,)a)), 7

where g, and q, =2zP/Na(P=0,1,2,...,N—1), P(q,) = cosh(qa)—

0s(q;a), 88 . (@) = &nn (— DEmm (D +&mm (— DEnn (@) Withgpy,
(+ @ = [on@pn(@exp(+qz)dz, and g° = [[p7(@en (@) +9h@eh
(z))]exp(—qlz—2z'|)dzdz'. Here a'! = 88 . +ape?iigg a2 =a?' =
— cosh(qa)gg . —ae¥’gg . and a?? =88 +axgg  with ey =
(1—exp(—qaN)), and g8 = gny(—@)gmm(—q) [11,12]. Using the
self-consistent linear density-density theory, a dielectric matrix,
e(nm;ll'y= 1°/11(q,,q,), can be obtained through the elements of
the polarizability tensor. Similarly, the matrix form of (g, q) yields

two coupled equations for 2(q,) and 5(q,, ¢,), corresponding to bulk
and surface parts, respectively, as:

By =11-"vi@n1°, ®)

and

s . (1—exp(—qaN)P(q,) 11 | 412 .

4,49, = ANP(q,)P(q,) [A" +A“exp(—iq,a).
+A*"exp(iq,a)+A*exp(i(q, — q)@)P(q)). )

The elements of A7 are related to the elements of a¥ in Eq. (7)
as follows:

g“ g12 (1791197912E—) *(Q“ﬂ+ +g129 ﬁ“ 612 A
221 g22 = 7(9219+222ﬂ—) a *521ﬂ+ 79229 /7‘21 ézz = .
(10)

Here, G =(1-exp(—qaN))/(4N)Xq,[?(q,)/P(q,)*] and H* =

(1—exp(—qaN))/(4N) Xq,[exp( +iq,2)%(q,)/P(q,)*] [11,12]. Using
the trans-formation introduced by Jain and Allen [4] for a semi-
infinite array of electron gas layers, e(nm;Il')~! for 4292, (@) is:
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