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a b s t r a c t

The behavior of multiple quantum well GaAs/AlxGa1�xAs semiconductor superlattices with different
dielectric interfaces are considered under magnetic and electric fields perpendicular and parallel to the
superlattice axis, respectively. The parabolic confining potential well was varied with the compositional
rate of the AlxGa1�xAs barrier. Taking into account intrasubband and intersubband transitions and using
random phase approximation, the density-density correlation function is calculated as a function of the
magnetic field strength, compositional rate, and averaged electric field strength over the quantum well.
In this way, the dispersion of the surface and bulk state energies are obtained. The Raman intensities for
these states are also obtained as a function of incoming light energy for various averaged electric field
strengths over the quantum well.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Studies of semiconductor superlattices fabricated by advanced
growth technologies have recently been of great theoretical
and experimental interest [1–12]. A GaAs/AlxGa1�xAs superlattice
[7,9,10,12] consisting of n-GaAs polar semiconductors separated
by AlxGa1�xAs barriers is a way of tuning the properties of a quasi-
two-dimensional electron gas within a quantum well. In order to
study the electrical and optical properties of such superlattices, it
is important to understand the possible collective excitations
found in inelastic light scattering experiments [13–17] and the
observed dispersion relations of surface and bulk modes. These
studies have mainly been restricted to systems under applied
magnetic fields. A more systematic and theoretical investigation of
the properties of superlattices in the simultaneous presence of
magnetic and electric fields is needed.

The purpose of this work was to investigate the electronic
collective modes of GaAs/AlxGa1�xAs semiconductor superlattices
under magnetic and electric fields, parallel and perpendicular to
the superlattice axis, respectively, while also tuning the parabolic
confining potential well by changing the compositional rate of
the AlxGa1�xAs barrier [18]. Using a model system, we obtained
the dispersion relations for bulk and surface plasmons, due to the

intrasubband and intersubband transitions, as a function of mag-
netic field strength, compositional rate, and averaged electric field
strength over the quantum well [12]. We also obtained the Raman
intensities expected for these bulk and surface plasmons as a
function of incoming light energy for the various averaged electric
field strengths over the quantum well.

In Sec. II, we present an idealized model for the dependence of
the parabolic confining potential well on compositional rate of the
AlxGa1�xAs barrier under magnetic and electric fields. Using the
random phase approximation for a semi-infinite superlattice, the
density-density correlation function is derived in Sec. III, which
includes a calculation of intrasubband and intersubband scattering
of incoming light as a function of magnetic field strength,
compositional rate, and averaged electric field strength over the
quantum well. In Sec. IV, the dispersions of bulk and surface
plasmons are calculated as a function of magnetic field strength,
compositional rate, and averaged electric field strength. In Sec. V,
the Raman spectra of bulk and surface plasmons are calculated for
various averaged electric field strengths over the quantum well.
Conclusions are given in the last section.

2. Model

A simple model for a multiple quantum well (MQW) in the
GaAs/AlxGa1�xAs superlattice system consists of a parabolic con-
fining potential well in the z-direction, parallel to the superlattice
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axis, and assumes free electron motion in the x and y directions.
When n electrons per unit cell occupy a quantum well, they move
in response to an external dc bias voltage. In this calculation, we
assume an averaged effective electric field [12] over the entire
quantum well. This assumption is valid since the Thomas–Fermi
screening length [19,20] of 6.46 nm, calculated for a well width of
L¼30 nm, electronic density ne ¼ 7:7� 1011 cm�2, and effective
electron mass m0 ¼ 0:0665me where me is the bare electron mass
[7,9,10,12,16], is much smaller than the quantum well width. In
the presence of an averaged electric and a static magnetic field, the
one-electron Hamiltonian in the quantum well is expressed in a
unified manner as [12]:

H ¼ 1
2
½ p!þe A

!�
1=mt 0 0
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0
B@
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where F
!

is the averaged electric field strength over the quantum

well, mlωz
2z2=2 is a parabolic potential well, p! is the momentum

operator, A
!

is the vector potential for constant magnetic field

B
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!

, and mt and ml represent the transverse and the
longitudinal mass components, respectively. For a magnetic field

B
!¼ ðB;0;0Þ in the Landau gauge A

!¼ ð0; �zB;0Þ; the Hamiltonian
under static magnetic and electric field perpendicular and parallel,
respectively, to the superlattice axis can be rewritten as:
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where ωc ¼ eB=mt is the cyclotron frequency, Ω2
z ¼ω2

z þmtωc
2=ml,

~m ¼mtΩz
2=ωz

2, z0 ¼ ðpyωc�eFÞ=ðmlΩz
2Þ, and px and py are the

x- and y-directional momentum operators, respectively. The
eigenfunctions of Eq. (2) have the form expðiqxxÞexpðiq0yyÞφðz�z0Þ
with q0y ¼ ðωz=ΩzÞqy: Here qx and qy are the quasi-continuous wave
vectors in the x and y directions, respectively. The φðzÞ are the
eigenfunctions for a simple harmonic oscillator. The energy
eigenvalues are:

Enðqx; qyÞ ¼ ðnþð1=2ÞÞℏΩzþ
ℏ2q2x
2mt
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where nð ¼ 0;1;2Þ denotes the quantum number and Vd ¼ F=B. The
cyclotron radius z0 decreases with increasing magnetic field
strength B and increasing averaged electric field. The confinement
frequency Ωz in Eq. (3) satisfies the condition 1:247x=2:0¼
mlΩ

2
z ðL=2Þ2=2 with the compositional fraction x of the AlxGa1�xAs

barriers [18]. The direct energy gap is given by: Eg ¼ 1:424þ
1:247x eV. Using this notation, we assume up to a third subband
level with En ¼ ðnþð1=2ÞÞℏΩz and a maximum well width L for the
parabolic confining potential.

3. Density-density correlation function

We consider a MQW superlattice consisting of N unit cells, in
which there is an electron layer in each cell. The particle state in
the unit cell can then be assumed to be of the form:

jqnl〉¼ exp½iðqxxþq0yyÞ�φnlðz�z0� laÞexpðiqzlaÞ; ð4Þ

where φðz�z0� laÞ is the electron wave function in the lth
quantum well, which is chosen to be real, and lð ¼ 0;1; :::;N�1Þ
is the cell index. The density-density correlation function
∏ðq;ω; z; z0Þ calculated by Hawrylak et al. [11] for a semi-infinite

MQW superlattice can be obtained from Eq. (4) as:

∏ðq;ω; z; z0Þ ¼ ∑
n;n0 ;m;m0

∑
l;l1 ;l

0 ;l01

∏nn0mm0 ðl; l1; l0; l01ÞΦn

nn0 ll1
ðzÞΦmm0 l0l01

ðzÞ; ð5Þ

where Φnn0 ll1 ðzÞ ¼ φn

nlðzÞφn0l1 ðzÞexp½� iqzðl� l1Þa�: The quantity
∏nn0mm0 ðqz; q0zÞ obtained by Fourier transform of the quantity
∏nn0mm0 ðl; l0Þ in Eq. (5) can be expressed in matrix form as ðqz; q0zÞ;
which satisfies an integral equation in the random-phase approx-
imation: ðqz; q0zÞ ¼ 0δqz ;q0z þ∑q″z

0V ðqz; q″zÞðq″z; q0zÞ: Here, 0 is the
layer-independent polarizability of the noninteracting system,
expressed as Π0

nmδnn0δmm0 . V ðqz; q0zÞ is the Coulomb interaction
between layers and is decomposed in the usual way through
Fourier transform: Vnn'rsðl; l

0Þ ¼∑l1 ;l
0
1
Vq
R1
� δ dz

R �δ1dz0Φnn'll1 ðzÞ
½expð�q z�z0j jÞþα1expð�qðz�z0ÞÞ�Φl0 l'1rsðz

0Þ. This expression for

V ðqz; q0zÞ also takes into account the effect of image charges and
eigenstates in the wells [11] through the parameter δ, defined
as the distance from the first layer to the interface. Here, q¼
ðq2x þq0y2Þ1=2; α1 ¼ ½ðε�ε0Þ=ðεþε0Þ�expð�2δqÞ; and Vq ¼ 2πe2=εq.
The bulk and surface parts of this expression for the Coulomb
potential are:

V BðqzÞ ¼
Vq

2
½ðsinhðqaÞ=PðqzÞ�1Þðgg

8
ðqÞþg0Þ�; ð6Þ

and
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where qz and q0z ¼ 2πP=NaðP ¼ 0;1;2;…;N�1Þ; PðqzÞ ¼ coshðqaÞ�
cos ðqzaÞ; gg

8
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ð7qÞ ¼ R
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8
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8
�α2eqagg � ; and a22 ¼ gg

8
þα2gg � with α2 ¼ α1

ð1�expð�qaNÞÞ, and gg � ¼ gnn0 ð�qÞgmm0 ð�qÞ [11,12]. Using the

self-consistent linear density-density theory, a dielectric matrix,
εðnm; ll0Þ ¼ Π0=Π ðqz; q0zÞ; can be obtained through the elements of
the polarizability tensor. Similarly, the matrix form of ðqz; q0zÞ yields
two coupled equations for BðqzÞ and Sðqz; q0zÞ, corresponding to bulk
and surface parts, respectively, as:

BðqzÞ ¼ ½1�0V BðqzÞ��10; ð8Þ

and

Sðqz; q0zÞ ¼
ð1�expð�qaNÞÞBðqzÞ

4NPðqzÞPðq0zÞ
½A11þA12expð� iq0zaÞ:

þA21expðiqzaÞþA22expðiðqz�q0zÞaÞ�Bðq0zÞ; ð9Þ

The elements of Aij are related to the elements of aij in Eq. (7)
as follows:

a11 a12

a21 a22

 !
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 !
A11 A12

A21 A22
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Here, G ¼ ð1�expð�qaNÞÞ=ð4NÞ∑qz ½BðqzÞ=PðqzÞ2� and H7 ¼
ð1�expð�qaNÞÞ=ð4NÞ∑qz ½expð7 iqzzÞBðqzÞ=PðqzÞ2� [11,12]. Using
the trans-formation introduced by Jain and Allen [4] for a semi-
infinite array of electron gas layers, εðnm; ll0Þ�1 for φ2

nlðzÞφ2
ml0 ðzÞ is:

εðnm; ll0Þ�1 ¼ 1
γnnmm

δll0 þ
∏0
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