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a b s t r a c t

Kubo formula was obtained for conductivity tensor of electron gas on the surface of nanotube with
superlattice in magnetic field. The high-frequency conductivity tensor components were calculated for
quantum and quasiclassical cases. Electromagnetic wave Landau damping areas in the tube were determined.
The conductivity tensor components show Aharonov–Bohm type oscillations and de Haas–van Alphen ones.
When Fermi energy exceeds the miniband width, beatings are observed in the plot of conductivity vs. the
tube parameters. Otherwise, the beatings are absent.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Interest in carbon [1–3] and semiconductor [4–6] nanotubes is
generated by their unique properties, namely high strength and
conductivity, as well as magnetic, waveguide, and optical proper-
ties. These systems are prepared by rolling up a graphene sheet
(or two-dimensional heterostructure) into a tube. Depending on the
rolling up manner, the tube has metallic, semiconductor, or dielec-
tric properties.

Modern technologies allow creating not only nanotubes, but
nanotubes with superlattices. Along with flat superlattices [7–15],
also ones with cylindrical symmetry exist [16]. They are of radial
and longitudinal types [16,17]. The radial superlattice is a set of
coaxial cylinders, while the longitudinal one looks like a set of
coaxial rings of the same radius. The tubes with longitudinal
superlattice are prepared by lithographic methods, using embed-
ding the fullerenes into the tube. In such system, there exists the
periodic potential acting upon electrons moving along the tube. In
the electron energy spectrum the minibands appear. The electron
density of states has root singularities at the miniband boundaries
[18].

In connection with increased interest in currents within the
cylindrical conductors, the authors of Ref. [19] have calculated the

longitudinal conductivity for solid and hollow cylinders without
superlattice in magnetic field, and considered quantum electro-
magnetic waves in such systems. Exact expressions for all the
components of the conductivity tensor for degenerate and non-
degenerate electron gas on the nanotube surface without super-
lattice are presented in Ref. [20]. It is worth to be clarified, how the
superlattice affects this tensor. In the present paper, the dynamic
conductivity tensor components were calculated based on the
model of effective mass for the nanotube with longitudinal super-
lattice in magnetic field. The superlattice axis and the magnetic
field vector were considered to be parallel to the tube axis. In
Section 2, Kubo formula was obtained for conductivity tensor. In
Sections 3 and 4, the conductivity tensor components were
calculated for quantum and quasiclassical cases. In Section 5, the
results are summarized.

2. Conductivity tensor

For the nanotube with superlattice in magnetic field, the
surface electron gas linear response to an electromagnetic wave

E
!¼ E

!
0expiðmφþqz�ωtÞ

is characterized by conductivity two-dimensional tensor σαβðm;

q;ωÞ. Here E
!

is electric field of the wave, m is integer number,
q and ω are the wave vector and frequency of the wave, φ and z
are cylindrical coordinates. The density of surface current on the
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tube is

jαðm; q;ωÞ ¼∑
β
σαβðm; q;ωÞEβðm; q;ωÞ; ð1Þ

where jαðm; q;ωÞ and Eβðm; q;ωÞ are cylindrical harmonics of j
!

and
E
!

vectors. Kubo's formula for the conductivity tensor of electron
gas on the surface of the nanotube with superlattice is [20]

σαβðm; q;ωÞ ¼ i
e2n
mnω

δαβþ
1
ω

Z 1

0
dt eiωt〈½Jαðm; q; tÞ; Jβð�m; �q;0Þ�〉;

ð2Þ
where mn and e are electron effective mass and charge respec-
tively , n is surface density of electrons, and J

!ðm; q; tÞ is the
cylindrical harmonics of current density operator in the external
magnetic field B

!
. The angle brackets denote the average value of

the operator commutator. The quantum constant was assumed as
unity. The components of J

!ðm; qÞ vector are
Jφ ¼ � 2e

mna
ffiffi
S

p ∑
lk

lþηþm
2

� �
aþ
lk aðlþmÞðkþqÞ;

Jz ¼ � 2e
mn

ffiffiffi
S

p ∑
lk

kþq
2

� �
aþ
lk aðlþmÞðkþqÞ; ð3Þ

where l and k are projections of electron angular momentum and
momentum, respectively, onto the axis of the tube with radiusa,
alk and aþ

lk are operators of annihilation and creation of electrons
in lk〉 state, η¼Φ=Φ0 is the ratio of magnetic flux Φ¼ πa2B through
the tube cross-section to the flux quantum Φ0 ¼ 2πc=e [21] and
S¼ 2πaL is the surface area for the tube with lengthL. Spin splitting
of levels is not considered in Eq. (3).

From Expressions (2) and (3) with taking into account Wick
theorem we obtain the components of conductivity tensor:

σφφ ¼ i
e2n
mnω

þ i
2e2

m2
n
a2ωS

∑
lk
f ðεlkÞ

lþηþm
2

� �2
εlk�εðlþmÞðkþqÞ þωþ i0

"

� lþη�m
2

� �2
εðl�mÞðk�qÞ �εlkþωþ i0

#
; ð4Þ

σφz ¼ σzφ ¼ i
2e2

m2
n
aωS

∑
lk
f ðεlkÞ

lþηþm
2

� �
kþ q

2

� �
εlk�εðlþmÞðkþqÞ þωþ i0

�

� lþη�m
2

� �
k� q

2

� �
εðl�mÞðk�qÞ �εlkþωþ i0

�
; ð5Þ

σzz ¼ i
e2n
mnω

þ i
2e2

m2
n
ωS

∑
lk
f ðεlkÞ

kþ q
2

� �2
εlk�εðlþmÞðkþqÞ þωþ i0

"

� k� q
2

� �2
εðl�mÞðk�qÞ �εlkþωþ i0

#
ð6Þ

Here f is Fermi function, εlk is electron energy on the tube surface.
That is

εlk ¼ ε0ðlþηÞ2þΔð1� cos kdÞ; ð7Þ
where ε0 ¼ 2mna2

� ��1 is rotational quantum, Δ and d are ampli-
tude and period of modulating potential on the tube surface,
respectively. The first term in Eq. (7) was obtained in [21]. The
second addend in the right part of (7) is taken from the theory of
tight binding of electrons with the lattice [22]. This is often used in
the theory of semiconductor superlattices [23–26]. The real parts
of the components σφφ and σzzare even functions of m and ω, while
imaginary parts are odd ones.

At zero temperature in summation ∑
k
the values k in Formulas

(4)–(6) are limited to interval �klrkrkl, where

kl ¼
1
d
arccos

εlþΔ�μ

Δ

is the maximum momentum of the electrons in the miniband
l, εl ¼ ε0ðlþηÞ2 is the miniband boundaries, μ is the Fermi energy.

If q¼ 0, at zero temperature from Formulas (4)–(6) we calculate
the components of dynamical conductivity tensor:

Reσφφðm;ωÞ ¼ e2

πm2
n
a3ω

∑
l
kl lþηþm

2

� �2
δðω�Ωþ Þ

�

� lþη�m
2

� �2
δðω�Ω� Þ

�
;

Imσφφ ¼
e2n
mnω

þ e2

π2m2
n
a3ω

∑
l
kl

lþηþm
2

� �2
ω�Ωþ

"
� lþη�m

2

� �2
ω�Ω�

#
; ð8Þ

σφzðm;ωÞ ¼ 0;

Reσzzðm;ωÞ ¼ e2
3πm2

n
aω
∑
l
k3l ½δðω�Ωþ Þ�δðω�Ω� Þ�;

Imσzzðm;ωÞ ¼ e2n
mnω

þ e2

3π2m2
n
aω

∑
l
k3l

1
ω�Ωþ

�
� 1
ω�Ω�

�
: ð9Þ

Here

Ω7 ¼ ε0m½2ðlþηÞ7m�
are frequencies of direct transitions of electrons between the
miniband boundaries εl in the field of electromagnetic wave.
During the transitions, conservation laws for longitudinal compo-
nents of angular momentum, momentum and energy are satisfied.

3. Degenerated electron gas in the quantum limit

At zero temperature, the summation over l in Eqs. (8) and (9) is
limited by the condition jεlþΔ�μjrΔ. This means that Fermi
energy is concentrated within the miniband. The minibands are
positioned in the intervals ½εl; εlþ2Δ� and have the width2Δ.

Generally, the semiconductor nanotubes with radius a¼
ð10�7�10�6Þ cm in magnetic field B¼ 105 G are used. In this
case, the electrons of the semiconductor nanotube occupy little
quantity of bottom minibands, which boundaries at ηo1=2satisfy
the inequalityε0η2oε�1oε1oε�2o ::: In the quantum limit
where no1=πad, Fermi energy is concentrated in the bottom
miniband l¼ 0 ½ε0η2; ε0η2þ2Δ�. In this case, in the absence of
spatial dispersion, from Eqs. (8) and (9) we obtain

Reσφφ ¼ e2k0
πm2

n
a3ω

ηþm
2

� �2
δðω�ε0mð2ηþmÞÞ� η�m

2

� �2
δðω�ε0mð2η�mÞÞ

h i
;

Imσφφ ¼
e2n
mnω

þ e2k0
π2m2

n
a3ω

ηþm
2

� �2
ω�ε0mð2ηþmÞ

"
� η�m

2

� �2
ω�ε0mð2η�mÞ

#
; ð10Þ

Reσzz ¼ e2k30
3πm2

n
aω
½δðω�ε0mð2ηþmÞÞ�δðω�ε0mð2η�mÞÞ� ;

Imσzz ¼ e2n
mnω

þ e2k30
3π2m2

n
aω

1
ω�ε0mð2ηþmÞ

�
� 1
ω�ε0mð2η�mÞ

�
: ð11Þ

Here Ω7 ¼ ε0mð2η7mÞ. The superlattice parameters Δ and d are
included in Eqs. (10) and (11) only via the maximum momentum
k0 of electrons in the bottom miniband. In the absence of super-
lattice, Δ-1, d-0, d2Δ-m�1

n
. Then

kl ¼ ½2mnðμ�εlÞ�1=2;
and Eqs. (10) and (11) agree with ones obtained in Ref. [20].
At m¼ 0, only the imaginary part e2n=mnω remains in Eqs. (10)
and (11), while the real part is zero. This determines the electro-
magnetic wave energy absorbed by electrons. In the absence of
direct and indirect transitions of electrons, the absorption is zero.

As the electron density grows, the number of addends in Eqs.
(8) and (9) increases. If Fermi energy is concentrated in the second
miniband, the oscillator forces of electron resonance transitions in
Eqs. (8) and (9) are determined by values k0 and k�1. These are
included in Eqs. (8) and (9), if the minibands are overlapped, i.e.
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