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a b s t r a c t

The conditions under which time–energy uncertainty relations derived by Deffner and Lutz [10] for
time-dependent quantum systems minimize the time necessary to excite such systems from their
ground state to excited states are examined. The generalized Margolus–Levitin and Mandelstam–Tamm
inequalities are worked out for specific fermionic and bosonic systems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Time is an essential concept for the realization of fast electronic
devices. As an example it may be useful to control and minimize
the time needed by a two-level quantum system to jump from its
ground state to an excited state. This time is constrained by
Heisenberg's time–energy uncertainty relation and bounded by a
lower amount known as a quantum speed limit (QSL) time.

The optimization of the time duration of quantum jumps for
stationary systems has been the object of numerous theoretical
studies starting with Mandelstam and Tamm [1] and pursued up
to present time in order to attain the sharper lower bound [2–6].

A vast literature has been devoted to various aspects of the
problem of time dependent systems [7–10]. Anandan and Ahar-
onov have used alternative geometric derivations to obtain
expressions for the Fubini-Study metric where the shortest possi-
ble distance between orthogonal states, which is along a geodesic,
leads to get implicit bounds for the time of evolution of a quantum
system [7,8]. Other authors have used differential geometric

methods to get sharper uncertainty relations for mixed states that
can be optimized in the case for fully distinguishable states.
Moreover they characterize the Hamiltonians that optimize the
evolution time for finite-level quantum systems [9]. Recently for
arbitrary quantum unitary processes Deffner and Lutz [10]
extended the Mandelstam–Tamm (MT) and the Margolus–Levitin
(ML) inequalities to time dependent systems which are either
intrinsically time-dependent or driven by an external time-
dependent perturbation. To this end, they derive the upper bounds
for the Bures angle (Bures length) or, rather, for Fisher information
[6]. At this stage we optimize the time in the extended ML
formulation with respect to a maximum value. Besides, this
principle of optimization, that fixes the minimum time, is also
applicable for all the estimates presenting an extremum. Another
groups have explored the MT bound, which is geometric in nature,
to attain the minimum time of evolution in the context of the
time-optimal control (time-OC) problem [12–15]. More specifi-
cally, this method seems to be useful to minimize the decoherence
for a system [16]. Further works have been developed for both
unitary and non-unitary processes [11,17,18].

In practice it is of interest to test the time needed by a quantum
system to be driven from its ground state into excited states. In the
present work the inequalities derived in [10] have been used and
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worked out in order to determine the time needed to generate
quantum transitions. In the first part of the present work we examine
the general conditions under which the ML inequality is optimized i.e.
comes closest to an equality for specific values of the time interval
over which the system evolves. In the second part the ML and MT
relations are applied to fermionic and bosonic systems.

In Section 2 the inequalities are explicitly formulated and the
conditions under which the inequalities can be optimized in the ML
case are presented in Section 3. Section 4.1 is devoted to a quantitative
study of the MT and ML expressions by applying them to a fermionic
1d quantum chain. In Section 4.2 the ML inequality is applied to a
simple bosonic system coupled to an external time-dependent per-
turbation which can act in a weak or a strong coupling regime.

2. Time–energy inequalities

The general structure of the time–energy inequality can be
written as [10]

τZRðτÞ ð1Þ
where RðτÞ ¼ ℏC0τ=ΔEðτÞ, C0τ ¼ arccos Ω0τ , Ω0τ ¼ j〈Ψ ð0ÞjΨ ðτÞ〉j is the
overlap between the wave function at time t¼0 and t ¼ τ, and
ΔEðτÞ characterizes the energy difference acquired by the system
between the initial and the final time. In the following ℏ¼ 1

In the Mandelstam–Tamm formulation the energy denomina-
tor ΔEðτÞ of Eq. (1) is given in terms of the variance of the energy:

ΔEðτÞ ¼ 1=τ
Z τ

0
dt
½〈HðtÞ2〉�〈HðtÞ〉2�1=2

〈Ψ ðtÞjΨ ðtÞ〉 ð2Þ

with

〈HðtÞ2〉¼ 〈Ψ ðtÞjHðtÞ2jΨ ðtÞ〉 ð3Þ
In the Margolus–Levitin formulation ΔEðτÞ ¼ 〈EðτÞ〉�Eð0Þ where

Eð0Þ is the energy at t¼0 and 〈EðτÞ〉¼ 1=τ
R
EðtÞ dt is the average

energy of the system over a time interval ½0; τ�.

3. Extrema in the Margolus–Levitin expression

In the case of a time-independent system the realization of
Eq. (1) as a strict equality can be of great practical interest since it
leads to the determination of the minimum time needed by the
system starting from its ground state to excited states. This
question has been successfully answered in [5,7].

The question may also be raised in the case where the Hamilto-
nian dynamics are time-dependent when it is of interest to find out
the minimal time interval ½0; τ� needed in order to realize the
equality. It comes out that an analytic solution has not been found
yet. A priori a less ambitious empirical answer might correspond to
C0τ ¼ 0 and a minimum of the energy denominator ΔEðτÞ.

A rigorous answer to the optimization of the inequality towards
an equality consists in a determination of the maximum of RðτÞ
which brings the r.h.s. of the expression closest or equal to τ.

The first derivative of this quantity with respect to τ leads to

dRðτÞ=dτ¼ ℏ½ΔEðτÞdC0τ=dτ�C0τdΔEðτÞ=dτ�
Δ2EðτÞ ð4Þ

An extremum is reached if dRðτÞ=dτ¼ 0 which leads to

dC0τ=dτ
C0τ

¼ dΔEðτÞ=dτ
ΔEðτÞ ð5Þ

This extremum is a maximum if, for the corresponding value of τ,

ΔEðτÞd2C0τ=dτ2�C0τd
2ΔEðτÞ=dτ2o0 ð6Þ

A consequence of Eq. (5) can be observed if C0τ is maximized.
This corresponds to Ω0τ ¼ j〈Ψ ð0ÞjΨ ðτÞ〉j ¼ 0, the vectors jΨ ðτÞ〉 and

jΨ ð0Þ〉 are orthogonal to each other. Then dC0τ=dτ¼ 0 and induces
dΔEðτÞ=dτ¼ 0 if ΔEðτÞa0. But, in the ML formulation

dΔEðτÞ=dτ¼ EðτÞ
τ

� 〈EðτÞ〉
τ

¼ 0 ð7Þ

which leads back to the expression of ΔEðτÞ if Eð0Þ ¼ 0. Hence the
stationarity of ΔEðτÞ is correlated with the orthogonality of the
vectors jΨ ðτÞ〉 and jΨ ð0Þ〉. The stationary point τ can be an inflexion
point or an extremum. Then C0τ ¼ π=2 modðkπÞ and

τZ
ℏπ=2
ΔEðτÞ ð8Þ

Whether or not this limit can be reached and Z replaced by a
strict equality depends on the system.

4. Models and applications

4.1. Fermionic 1d chain

In the first step the time–energy inequality is applied to the
time-dependent 1d chain with even periodic boundary conditions
already introduced in [19,20]

H0 ¼ J=2ð1þγÞ∑
ðiÞ
σxi σ

x
iþ1þ J=2ð1�γÞ∑

ðiÞ
σyi σ

y
iþ1�h0∑

ðiÞ
σzi ð9Þ

where σxi is the x component of the Pauli matrix and similarly for
the y and z components. The system is integrable and the wave
function is given as a product of single particle wave functions
with corresponding energies [21]. The time dependence is gener-
ated by a local excitation of the last spin by an external magnetic
field

HðNÞ
1 ðtÞ ¼ h1 expð�t=τHÞSzN ð10Þ

with SzN ¼ σzN=2 [21].
The wave function of the system is obtained perturbatively, up

to second order in the interaction which works as a perturbation
and leads to the expression of the overlap

Ω0τ ¼ j〈Ψ ð0Þjð1þUð1Þð0; τÞþUð2Þð0; τÞÞjΨ ð0Þ〉j ð11Þ
where jΨ ð0Þ〉 is the wave function at t¼0, and Uð1Þð0; τÞ and
Uð2Þð0; τÞ are respectively the first and the second order contribu-
tion to the evolution operator Uð0; τÞ ¼ exp½� iðH0τþ

R τ
0 dtH

ðNÞ
1 ðtÞÞ�.

A justification for neglecting higher order contributions used in
the numerical application is given in the Appendix.

The energy of the system over a time interval ½0; τ� reads

EðτÞ ¼ 1=τ
Z τ

0
〈Ψ ðtÞjHðtÞjΨ ðtÞ〉=〈Ψ ðtÞjΨ ðtÞ〉�Eð0Þ ð12Þ

where jΨ ðtÞ〉 is the perturbed wave function evaluated up to order
2 and Eð0Þ the initial energy of the system.

4.1.1. General considerations concerning the application of the model
The present external magnetic field on a unique spin state of

the chain has been explicitly chosen to produce a weak effect on
the chain in order to allow for a perturbative treatment. Under
these conditions and for fixed J¼1 it comes out that the wave
function overlaps are not very sensitive to the strength of the
magnetic fields, neither h0 nor h1 as long as these quantities stay in
the range of unity. The same is true in the case of variations of the
asymmetry parameter γ which are fixed in the interval ½0;1�. In all
applications the length of the chain is N¼100.

4.1.2. Application of the Mandelstam–Tamm expression
Typical results concerning the r.h.s. of the MT expression are

shown in Fig. 1 as a function of γ with τ¼100, h0 ¼ 1, h1 ¼ 1. The
results show that RðτÞ is very small when compared with τ.
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