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a b s t r a c t

The longitudinal optical conductivity in bilayer graphene is calculated using the dielectric function by
defining the density operator theoretically, while the effect of the broadening width determined by the
scattering sources on the optical conductivity is also investigated. Some features, such as chirality,
energy dispersion and density of state (DOS) in bilayer graphene, are similar to those in monolayer
graphene and a traditional two-dimensional electron gas (2DEG). Therefore, in this paper, the bilayer
graphene optical conductivity is compared with the results in these two systems. The analytical and
numerical results show that the optical conductivity per graphene layer is almost a constant and close to
e2=ð4ℏÞ, which agrees with the experimental results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphene a two-dimensional material with honeycomb structure
was fabricated experimentally by Geim et al. [1]. This ultra-thin
material exhibits very unique and excellent physical properties, such
as high mobility [2], unique quantum Hall effect [1], and Klein
tunning [3]. Hence, graphene has been proposed as an advanced
electronic and optoelectronic material and arouses wide investiga-
tion both experimentally and theoretically [4–10]. These excellent
electronic and optical properties are related to the chirality of
graphene and the linear and conical spectrum of band structure at
the Dirac K=K 0 points. In monolayer graphene, the energy dispersion
EðkÞ ¼ sℏvFk is linear with the wavevector and has two branches
s¼ 71, which originates from the two sublattices. vF is the Fermi
velocity which is related to the hopping energy between the nearest-
neighbor carbon atoms. In bilayer graphene, the 2�2 effective
Hamiltonian [11–13] results in two parabolic bands. The energy
dispersion with parabola and two branches have features similar to
both monolayer graphene and traditional two-dimensional electron
gas (2DEG) [11,13].

The properties of the optical conductivity have been widely
investigated in graphene experimentally [14–16] and theoretically
[9,17–22]. The experimental value of the optical conductivity per
graphene layer (or an optical sheet conductivity) is almost a
constant and close to e2=ð4ℏÞ, which is independent of the
frequency and the interplane hopping. The second observation is
that the optical sheet conductivity at different carrier densities
showed a threshold structure at two times the Fermi energy under
an applied gate voltage. The Kubo formula and/or the Boltzmann
transport theory were employed to investigate the optical con-
ductivity theoretically. The Kubo formula starts from the current–
current correlation function which is expressed as a product
of two Green's functions. Using the linear response theory, the
ac conductivity can be obtained. About the Boltzmann equation
method, every collision term can be expressed directly. The mass-
and energy-balance equations are employed to evaluate the
optical conductivity and other electrical and optical properties
self-consistently [23,24]. From Maxwell equation, the imaginary
part of the dielectric function is related to the conductivity.
Therefore, the longitudinal optical conductivity can be investi-
gated from the polarization function (density–density correlation
function).

In this paper, using the dielectric function, we examine the
longitudinal optical conductivity with different broadening width in
a bilayer graphene system. The results in monolayer graphene, bilayer
graphene, and the conventional 2DEG are compared. The theoretical
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approach for calculating the optical conductivity induced by the
dielectric function is developed in Section 2. The analytical and
numerical results and discussion are presented in Section 3.

2. Theoretical approaches

From Maxwell equation ∇�H¼ ∂D=∂tþ J¼ � iωεEþσE, a
complex dielectric function ε0 ¼ εþ iσ=ω is introduced to study
the electromagnetic transmission problems. It can be seen that the
imaginary part of the dielectric function is related to the con-
ductivity. The relationship between the optical conductivity and
the dielectric function can be strictly solved in microscopic system.
In the presence of an optical field, the transverse dielectric
function εT ðω; qÞ of the solid can be obtained from the retarded
form of the current–current correlation function. The longitudinal
dielectric function εLðω; qÞ can be derived from the density–
density (d–d) correlation function. During the process of the
electrons absorbing the optical energy to high energy states, the
change of the wave vector q is very tiny. In the long wavelength
limit q-0, the transverse dielectric function is exactly equal to the
longitudinal one :εT ðω; qÞ ¼ εLðω; qÞ ¼ εðω; qÞ.

Applying the electron wavefunction and energy spectrum to a
standard technique to derive the electron d–d correlation function
for graphene, the dielectric function can be obtained as [13]

εðω; qÞ ¼ 1�VqΠðω; qÞ ð1Þ
Πðω; qÞ ¼ gsgv∑s;s0 ;kðð1þss0 cos ð2φÞÞ=2Þ ðf s;k� f s0 ;kþqÞ=ðℏωþEs;k
�Es0 ;jkþqj þ iΓÞ, gs¼2 is spin degeneracy. There are two points K
and K 0 at the corner of the graphene Brillouin zone, called the
Dirac points. gv¼2 refers to this degeneracy. f s;k is the Fermi–Dirac
distribution function. s; s0 ¼ 71 refers to the conduction band
ðþ1Þ and the valence band ð�1Þ. ð1þss0 cos ð2φÞÞ=2 comes from
the overlap of carrier states, with cos φ¼ ðkþq cos θÞ=jkþqj,
θ being the angle between k and q, k0 ¼ kþq. Es;k ¼ sℏ2k2=ð2mÞ,
m� 0:033me is the effective mass of bilayer graphene with me

being the free-electron mass [25]. Vq ¼ 2πe2=ðκqÞ with κ being the
static dielectric constant for graphene. Γ is the broadening width
induced by the carrier scattering process. With the electron d–d
correlation function, we can calculate the optical conductivity
induced by electron–electron (e–e) interaction, Im εðq;ωÞ �
Vq ImΠðq;ωÞ. If a weak external light field polarized along the
2D plane (taken along the x direction) is present in graphene, the
optical conductivity can be derived from Kubo formula [26,27],
which is called as the longitudinal optical conductivity:

σxxðωÞ ¼ �e2ω lim
q-0

1=q2
� �

∑
n0 ;n

ImΠn0nðω; qÞ; ð2Þ

where q-0 reflects a fact that the electron–photon scattering
does not change the wavevector of an electron. In the present
study, gate voltage was used to tune the carrier density and the
conduction band is occupied with electrons. The results of the
optical conductivity contributed by two transition channels (intra-
and inter-band transitions) can be obtained by the analytical and
numerical calculation, σxxðωÞ ¼ σintra

xx ðωÞþσinter
xx ðωÞ.

The intra-band channel (i.e., s0 ¼ s) comes from the electronic
transition in a same band. At a long-wavelength limit (i.e., q-0),
cos φ� 1�ðq2=2k2Þ sin 2 θ. f þ ;k� f þ ;kþq � �q � k̂δðk�kF Þ. A finite
value Γ was taken for the broadening width. The intra-band transi-
tions in a conduction band give rise to the optical conductivity:

σA�intra
xx ðωÞ ¼ σ0

bi
8ΓEF
π ℏωð Þ2

ð3Þ

Here, the superscript “A” indicates the analytical results. σ0
bi ¼ e2=ð2ℏÞ

which is two times larger than the value σ0
mono ¼ e2=ð4ℏÞ in monolayer

graphene. It originates from the difference of the parabolic and/or

linear energy dispersion. The dependence of the intra-band transition
contribution to the optical conductivity on the broadening width and
the Fermi energy and the optical energy is similar to the case in a
conventional 2DEG, σxx�2DEGðωÞ ¼ ðe2=ℏÞΓEF=½π ℏωð Þ2� and the case
in monolayer graphene [28].

The inter-band transition (i.e., s0 ¼ �s) refers to the electron
transition from the valence band to the conduction band:

σA�inter
xx ðωÞ ¼ σ0

bi
ℏωΓ

π ℏωð Þ2þΓ2
h i

� 1
2
ln

k4

R
þℏω
Γ

arctan
ℏ2k2=m�ℏω

� �
Γ

2
4

3
5
kc

kF

ð4Þ

Here, R¼ ℏ2k2=m�ℏω
� �2

þΓ2, and kc is the cutoff wavevector for

graphene, kc � 1=a with a� 1:42Å the carbon–carbon distance.

ℏ2k2=m is the energy difference ðEþ ;k�E� ;kÞ, which is the main
difference from that in monolayer graphene. In monolayer gra-
phene, this term is 2γk in Eq. (5) of Ref. [28]. When Γ5ℏω,

σA�inter
xx ðωÞ � σ0

bi ð1=πÞ arctan ℏ2k2=m�ℏω
� �

=Γ
h ikc

kF
.

From the above analysis, the main contribution to the optical
conductivity comes from the channel of the inter-band transition.
The intra-band transition is linear with ΓEF=ðℏωÞ2. Therefore, the
contribution from intra-band transition is weak in a low density
system or in the presence of a strong optical field. When the
optical energy is larger than two times the Fermi energy
ðℏωZ2EF Þ and the broadening width is taken to be a small value,
using the relationship limΓ-01=ðxþ iΓÞ � pð1=xÞ� iπδðxÞ, the opti-
cal conductivity can be obtained as σxx � σA�inter

xx � σ0
bi. It can be

seen that the optical conductivity is close to a constant.
For an air–graphene–dielectric-wafer (e.g., SiO2) system, the

transmission coefficient can be obtained by [17]

TðωÞ ¼
ffiffiffiffiffi
ϵ2
ϵ1

r
4ðϵ1ϵ0Þ2

ð ffiffiffiffiffiffiffiffiffiffi
ϵ1ϵ2

p þϵ1Þϵ0þ
ffiffiffiffiffiffiffiffiffiffiffi
ϵ1
σ ðωÞ

q
c 2
����� ð5Þ

Here, ϵ2 is the effective high-frequency dielectric constant for
substrate (ϵ2 ¼ 2:25 for SiO2 substrate). ϵ1 ¼ 1, ϵ0 are for the case
of air and vacuum. c is the speed of light in vacuum.

3. Results and discussions

In this paper, we present the analytical and numerical results for
the optical conductivity in bilayer graphene at a low-temperature limit
T-0 K. We take the typical sample parameters in the calculation. In
our calculations, we consider a typical bilayer graphene devices in
which the carriers are electrons, while electrons can be tuned by the
gate voltage. The Fermi wavevector kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πne=gsgv

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
=ℏ for

the parabolic bilayer graphene energy curve. When ne ¼ 1012 cm�2

was taken, the Fermi energy E0F ¼ 36:271 meV, and the Fermi wave
vector k0F ¼ 1:7725� 106 cm�1 were determined by the condition of
electron number conservation. In the numerical calculation, the small
wavevector during the electron–photon scattering process q¼ 0:01k0F
was taken.

Fig. 1 shows the optical spectrum as a function of the radiation
energy at a fixed electron density for different broadening width Γ.
Here, using Eqs. (3) and (4), the optical conductivity was calculated
analytically in a long wavelength limit (i.e., q-0). There are two
transition channels (i.e., intra- and inter-band) which contribute to
the optical conductivity. Intra-/inter-band transition indicates that a
carrier in a conduction/valence band is excited to the conduction
band when the carrier absorbs the energy of the incident light field.
From Fig. 1, it can be seen clearly that (1) the inter-band transition
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