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a b s t r a c t

The transmission probability of electrons tunneling through a graphene superlattice with periodic
potential patterns is investigated using the transfer matrix method. It is found that the transmission
probability as a function of incidence energy has more than one gap. The number, width and position of
transmission gaps can be modulated by changing the period number, the incidence angle, the height and
width of the potential. These characteristics of the transmission gaps in graphene superlattices may
facilitate the development of many graphene-based electronics such as a multichannel electron wave
filter.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphene, a new allotrope of carbon, has attracted much
attention both in theoretical and experimental research due to
its particular electronic properties since it was experimentally
fabricated by Novoselov et al. [1]. The quasiparticles in single-layer
graphene are massless Dirac fermions with linear dispersion
spectrum relation, which can be governed by a massless Dirac
equation. Thus, graphene exhibits a multitude of novel electronic
and transport properties, for instance, half-integer quantum Hall
effect [2,3], finite minimal conductivity [2,4], electron–phonon
interaction [5], and ultrahigh carrier mobility [6]. Another novel
electronic transport property is the perfect transmission in tunnel-
ing through an arbitrarily high and wide graphene barrier at
normal incidence, which is referred to as Klein tunneling [7].
Since the Klein tunneling was first studied in single barrier in
graphene, the transport properties of massless Dirac fermions
tunneling through the single [7–11] and double [12–15] graphene
barriers have been extensively studied. When the Dirac fermions
transport through a single square barrier in graphene at nonzero
angle, the transmission probability as a function of incidence
energy has a gap due to the appearance of evanescent waves
inside the barrier [8]. The transmission gap can be controlled by
the incidence angle, the height, and width of the barrier. A
transmission gap also exists when the electrons transport through
a trapezoidal barrier at nonzero angle [11]. These features of

transmission gap in single square and trapezoidal barrier are
suggested to realize an energy-dependent electron wave filter.

Recently, many studies of graphene superlattices [16–23] have
been reported experimentally and theoretically. The periodic
graphene superlattices can be generated by different methods,
such as applying periodically gate electrodes [24] or parallel
ferromagnetic metal stripes [16] on graphene to generate electro-
static potentials or magnetic barriers. The electronic transport
properties and band structures of the graphene-based one-dimen-
sional (1D) superlattices with periodic [17,18], Fibonacci [20], and
Thue–Morse sequence [21] have been studied. Furthermore, the
transmission gaps in graphene superlattices have also been
investigated [23]. The authors studied the transmission gap in
single-barrier, double-barrier and triple-barrier. It is found that the
number of transmission gaps is in line with the number of barriers
with different heights, and the transmission gaps can be controlled
by adjusting the height and width of the barriers.

It is well known that the marked property of photonic crystals
is photonic band gap, where the propagation of photons in a
certain range of frequencies is strictly forbidden [25]. It is similar
to the transmission gap in Dirac fermions tunneling through a
graphene barrier where the transport of electrons with the
incidence energy in the gap is prohibited. The photonic band gap
of 1D periodic photonic crystals has been investigated with the
Eigen matrix method [26], which is crucial for controlling the
transport of light in photonic crystals, and can be used to design
different kinds of filters [27,28]. It would be more useful for
practical applications to investigate the transmission gap and
control the electronic transport in gaphene superlattices with
periodic potential patterns. It is notable that Berman et al. [29]
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proposed a two-dimensional (2D) graphene-based photonic crys-
tal, which can be used as the frequency filters and waveguides for
the far infrared region of electromagnetic spectrum at a wide
range of the temperatures. Motivated by these studies, we in-
vestigate the transmission gaps of Dirac electrons penetrating
through a graphene superlattice with periodic potential patterns
at nonzero incidence angle in the present work. The dependence
of transmission gaps on the period number, the height, and width
of potential are discussed, respectively. These transmission gaps in
graphene superlattices are potentially useful in designing an
electron wave filter.

2. Theoretical model

We consider the Dirac fermions with energy E incident from
the left side of the periodic potential structure at angle θ0, with
respective to the x axis, as shown in Fig. 1. The periodic structure,
which can be fabricated by applying a local top gate voltage to the
graphene [24], consists of elements A and B, with the period
number N. The element A(B) denotes a barrier (well) with the
width dA(dB). The quasiparticles in single-layer graphene at low
energy governed by the massless Dirac Hamiltonian:

σ^ = →⋅→ +H v p V x( )F in the presence of electrostatic potential V(x).
→p is the momentum operator, σ σ σ→ = ( , )x y is the Pauli matrices, and
vFE106 m/s is the Fermi velocity. The Hamiltonian acts on a two-
component pseudospinor wave function Ψ ψ ψ= ˜ ˜( , )T

A B , where ψ̃A
and ψ̃B are the smooth enveloping functions for two triangular
sublattices in graphene. The wave function ψ̃ x y( , )A B, can be
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is the y component of the wave vector = − ℏk E V v( )/j j F inside the
potential Vj, θ = k karcsin( / )j y j is the angle in the jth potential. The
entire transfer matrix which connects the incident and exit wave
functions can be obtained
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, and N is the period number of this

periodic potential structure. χ ζ ζ≡ = +u u N( ) sin[( 1) ]/sinN N is the
Chebyshev polynomials of the second kind, and χ¼Tr[MAMB]/2,
ζ χ= −cos 1 is the Bloch phase of the periodic system [30].

According to Bloch's theorem, the electronic dispersion at any
incidence angle for infinite periodic structure is
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Here, K is the Bloch wave vector, and Λ¼dAþdB is the length of
the unit cell. When Λ = <K M Mcos( ) Tr[ ]/2 1A B , K is real, the Bloch
wave is a propagation mode, and it corresponds to the allowed
band. The forbidden gap is given by Λ = >K M Mcos( ) Tr[ ]/2 1A B ,
where K is imaginary, and the Bloch wave is a evanescent wave.
Thus, Λ = =K M Mcos( ) Tr[ ]/2 1A B give the boundaries of the for-
bidden gap, namely the transmission gap.

With the entire transfer matrix, the reflection and transmission
coefficients are given by
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Here, θe is the exit angle. Thus, the transmission probability of
the periodic potential structure is T¼ |t|2. In this study, we neglect
the microscopic details of the interaction effects, such as the inter-
valley coupling and the spin–orbit interaction. In graphene we can
realize potential steps that are smooth ( ≫d aA ), on the lattice scale

=a 1.42 Å, therefore there is no inter-valley scattering since the
distance between the valleys in reciprocal space is ′′− ~K K a1/
[31,32].

With the transmission probability, we can obtain the total
conductance G of the system at zero temperature according to
the Landauer–Büttiker formula [33]:

∫ θ θ=
π

π

−
G G T cos d ,

(6)0
/2

/2

0 0

where T¼ |t|2, and π= ℏG e EL2 /( )y0
2 is taken as the conductance unit

with Ly the sample size along the y direction. The Fano factor can

Fig. 1. (a) Schematic diagram of graphene superlattices (AB)N with one-dimen-
sional periodic potentials, N is the period number. (b) The schematic profiles of the
potential VA and VB.
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