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a b s t r a c t

By using transfer matrix method, narrow passbands of TE wave from one-dimensional superconductor–
dielectric photonic crystal heterostructures are presented. Various superconductor within the two-fluid
model are considered. Results show that by selecting proper width for superconductor and dielectric
layers and proper materials selection, single narrow passband in visible region can be obtained. Behavior
of these passbands versus the temperature of superconductors, external magnetic field and incident
angle are considered. We have shown that it is possible to obtain omnidirectional passbands with ex-
amining temperature, the dilation factor of the half part of a heterostructure and the other parameters of
the heterostrutures. These tunable narrow passband may be useful in designing of narrow band filters or
multichannel filters.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Photonic crystals (PhCs), are spatially periodic structures, can
generate photonic band gap (PBG), where propagation of electro-
magnetic waves along the direction of periodicity is restricted for a
few spectra [1,2]. With the proper design of the periodicity and
specific selection of constituting materials, the PhCs can act as a
perfect optical waveguide or insulator. One-dimensional (1D) PhC,
periodic stack of two or more different layers, has many applica-
tions such as omnidirectional mirrors, optical diodes, solar panels,
filters, etc. [3–6]. An optical filter is a device, which has the
property of adding or dropping a given wavelength channels from
the multi-wavelength network.

It is proven that by introducing a defect into a regular photonic
structure the periodicity is broken and this leads to the appear-
ance of localized modes in the PBG. This feature can be employed
to design optical filters. On the other hand, bandpass filters (BPF)
can be realized in a heterostructure of two different PhCs by
making the first transmitted peak near the PBG edge of one PhCs
coincide with of the other PhC. Polarization BPFs are BPFs for a
given polarization and prohibit the propagation of the other. These
filters have potential applications in photonic and optoelectronics.
Recently, some 1D PhC heterostructures are proposed as a filter
with narrow frequency and sharp angular filtering [4,7–10].

However, once the PhC has been fabricated, optical properties of
PhCs are immutable and remain unaltered. Therefore, employing
of tunable elements in the PhCs gives us the possibility to tune the
optical properties with considerable flexibility, leading to novel
applications. In general, permittivity's of tunable materials such as
ferroelectrics [11,12], liquid crystals [13,14], ferromagnetic [15,16],
semiconductors [17–19] and superconductors [8,20–25] in the
PhCs can be changed by some external agents like as electric fields,
magnetic fields or temperature. Recently, superconducting PhCs
have attracted much attention and have two important advances
compared with metallic and dielectric PhCs [20–25]. First, as
mentioned above, the optical properties of superconducting PhCs
can be tuned externally, because the permittivity of super-
conducting materials is depend on the London penetration depth,
which is strongly influenced by temperature and externally mag-
netic fields. Second, losses can be greatly reduced using a super-
conductor in place of a metal.

In this work, by the aid of transfer matrix method (TMM),
transmission properties of a 1D PhC heterostructure containing of
alternative layers of superconductor and dielectric layers are
considered. We examined various dilation factors of second sub
PhC (subPhC), temperatures and magnetic strength to obtain
omnidirectional passband. The reminder of this paper is structured
as follows: in the next section we give a brief formalism of transfer
matrix method which is used to obtain the numerical results.
Section 3 is devoted to numerical results and discussion for fil-
tering. Section 4 concludes with brief comments.
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2. Theoretical model and formalism

A schematic representation of the designed superconductor–
dielectric PhC structure is shown in Fig. 1, in which super-
conductor and dielectric layers are denoted by s and d letters,
respectively. Each unit cell is composed of two layers of super-
conductor and dielectric, which are stacked along the z-axis di-
rection. For the first subPhC the lattice constant is = +a d d1 2,
where d d( )1 2 is the thickness of dielectric (superconductor) layers.
For the second subPhC same materials are used and the only dif-
ference between these subPhCs is the thickness of the layers. More
exactly, the thickness of second subPhC is dilated by factor f re-
spect to first PhC one. Therefore, our used 1D PhC heterostructure
can be considered as =AB CD AB fAfB( ) ( ) ( ) ( )N N N N in which A(B) is the
superconductor (dielectric) layers of the first PhC and C(D) is the
superconductor (dielectric) layers of the second PhC.

To obtain the BPF frequencies we have employed transfer ma-
trix method (TMM) and Bloch's theorem. Let a wave be incident
from the vacuum at an angle θ onto the PhC heterostructure. For
the transverse electric (TE) wave/transverse magnetic (TM) wave,
the electric/magnetic field is along with the x direction where the
PhC layers are in the x-y plane. The electric and the magnetic fields
of one layer can be related via a transfer matrix (see [10] and [11]
for further details):
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where, mij are the matrix elements connecting electromagnetic
fields at the incident end and those at exit end. The transmittance

is = ⁎T tt where t is the transmission coefficient that is given by
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Here, η η θ= = −+ 1 sinn0 1
2 for the vacuum at the input and

output. For an infinite periodic structure, we can use Bloch's the-
orem by knowing that the two components of electromagnetic
fields beside on period should be fulfilled
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Fig. 1. Schematic representation of selected heterostructure. The vertical dotted
line indicates the interface of the subPhCs.

Table 1
Our used superconductors with their critical temperature and zero-temperature
London penetration depth.

Materials name T (K)c λ (0)L εsc p

1 Bi Pb Sr Ca Cu O1.85 0.35 2 2 3.1 y 107 [20] λ = μm(5 K) 23L 12 1

2 δ+Bi Sr CaCu O2 2 2 8 85 [20] – 10 1

3 Nb 9.2 [26] 83.4 nm 1 4
4 NbN 16 [8] 200 nm 1 4
5 K C3 60 19.5[8] 480 nm 1 4
6 YBa Cu O2 3 7 93 [8] 145 nm 1 2
7 HgBa Ca Cu O2 2 3 10 135 [8] 177 nm 1 2

Fig. 2. (a) TE projected band structure of the second subPhC as a function of its
dilation factor. The shaded and white areas are show the passbands and bandgaps
of the second subPhC, respectively. The horizontal solid lines correspond to band
edges of first subPhC (in which no dilation exist, f¼1). (b) Transmittance of
structures which is depicted in Fig. 1 for a given dilation factor. upper panel: PhC1
without any dilation, middle panel: PhC2 with a fixed dilation and lower panel: the
whole heterostructure versus wavelength. The dilation factor is =f 0.355 in panels
a and b which is depicted by an arrow in part a. fourth SC of Table 1 and Si materials
are used for computations for SC and dielectric layers, typically.
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