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a b s t r a c t

The complex hysteretic properties observed in structured ferromagnetic materials can be revealed with
remarkable details in magnetization processes like the first-order reversal curves (FORC) – a character-
ization technique extensively used in recent years. The really fundamental problem in the analysis of
experimental FORC diagrams is related to the possibility to link the hysteretic properties of real physical
entities in a unique way with regions from the FORC distributions. Actually, what many scientists are
often doing is to use a Preisach-type interpretation of FORC data without a proof for the accuracy of this
procedure. In this paper we analyze in detail the relation between the switching events of physical
entities given by the Preisach function and the FORC distribution in magnetic nanowire arrays with the
aim to show the limits of the conventional interpretation of FORC data. For this type of sample we show
how the real switching events are contributing to the experimental diagram. We present in a systematic
manner the way in which the switchings of the physical wires are observed multiple times (both as
positive or negative contributions). The multiplicity of switching occurrences is not the same for all the
wires in the sample, being dependent on the wire intrinsic coercivity and its position in the array. In this
manner one can track the switchings contributions of real magnetic wires on the FORC diagram.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 1935 Ferenc Preisach [1] had the brilliant idea to build an
elegant model for magnetic hysteresis based on a bi-dimensional
distribution of coercive and interaction fields of the fundamental
elements of hysteresis – the hysterons, named Preisach distribution.
Classical Preisach Model (CPM) establishes a hypothetical bi-
univocal correspondence between physical entities (ferromagnetic
particles) and the Preisach distribution of hysterons. Many re-
searchers, especially in the field of magnetic recording media,
developed in the 1960's methods intended to provide Preisach
distributions for real samples [2–5], but each time significant
problems were evidenced. Virtually all the experimentally ob-
tained distributions were asymmetrical with respect to the inter-
action field axis, and the results were dependent on the experi-
mental procedure used [2–5] (essentially on the sequence of fields
used in the experiment). The solution found at that time to give a
physical meaning to these experimentally determined Preisach
distributions was related to the idea of statistical stability [5].
However there is an inconvenient in this assumption: within this

framework, one actually abandons the direct link between the
hysteresis of physical entities and the Preisach hysterons. The aim
of the identification techniques for the Preisach model was
reduced to the evaluation of statistical distributions of coercivities
and interactions but the attempt to accurately simulate with the
CPM higher order magnetization curves was not really successful.
Modified versions of the CPM were developed to improve the
prediction capability of the model (for example, Moving Preisach
Model [6,7]). An important milestone in the development of
robust identification techniques for the CPM is the theoretical
study of Mayergoyz [8,9] in which he mention that along with the
interpretation of the CPM given in Ref. [8] “Krasnosel'skii sepa-
rated Preisach's model from its physical meaning and represented
it in a pure mathematical form”. The necessary and sufficient
conditions to describe correctly a hysteretic system with the CPM
were identified as the wiping-out and congruency properties. For
an ideal CPM system, a new identification method of the Preisach
distribution based on the measurement of the first-order reversal
curves (FORC) was also presented in this article [8]. However, as
virtually all physical hysteretic systems do not obey both the
wiping-out and congruency properties, this technique has not
been in fact used in laboratories. The actual practical use of the
FORC identification technique was triggered by the paper
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published by Pike and collaborators [10] in which the authors have
introduced the idea that the FORC method is purely experimental
and that it should be used for any hysteretic system just to provide
its fingerprint. In this understanding FORC technique is decoupled
from the Preisach model (“A FORC distribution, by contrast, is not
based on any assumptions. It is not part of a theoretical model”
[10]). Nonetheless, in the practical use of this method this aspect is
not thoroughly remembered (see also Refs. 11,12).

The main aim of this paper is to present a systematic study of
the relation between the individual switchings in a simple
magnetic system (parallel magnetic wires organized in almost
perfect 2D array) and the FORC diagram. We focus our attention on
how far is the coercivity and interaction distribution, provided by
the FORC data, from the classical Preisach image.

2. FORC diagram of the nanowire array

The arrays of ferromagnetic nanowires in axial applied field are
the best candidates to be described within the general framework
of the Preisach-type models. In a given magnetic state, the
magnetic moment of each wire is in one of two equilibrium states
(“up” or “down”), and the wire has an intrinsic coercive field
depending on the geometrical characteristics, structural defects
and impurities [13]. When the distances between wires are very
large, their magnetic moments are not interacting and associated
Preisach hysterons are symmetrical. In this specific case any
magnetization process is governed only by the individual coerciv-
ities of the wires and the system can be described with the CPM
using a singular distribution along the coercive field axis. When
the inter-wire distance is decreasing, the magnetostatic interac-
tions between wires are gradually increasing.

In the stable equilibrium state of any given cylindrical nano-
wire, only uncompensated magnetic charges on the cylinder bases
are contributing to the interaction field in the other wires from the
array [12,14]. In this case, the switching events are influenced not
only by the intrinsic coercivities but also by these interaction
fields. To simulate the nanowire arrays behavior, we use a toy-
model (Ising-Preisach zero Kelvin model) described in details in
Ref. [12]. Typically, in simulations one considers a rectangular
network of =N 1600 Nickel cylindrical wires with the same
length, L¼6 μm, and radius, R¼40 nm, perfectly ordered in a 2D
square grid with the distance between neighboring wires
a¼250 nm. The intrinsic coercive field distribution is considered
a Gaussian distribution with the average value =H 150 Oec0 and
the standard deviation =σH 20 Oec . The coercivity of the wires
generated with this distribution was randomly allocated to the
wires in the sample. In each state a nanowire is subjected to an
effective field obtained by adding to the applied field, H , the
interaction field created in the center of the nanowire by all the
other wires from the array:
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the interwire distance, and =s 0k if the k-th wire is in “down”
position and =s 1k if the k-th wire is in “up” position. Magnetiza-
tion curves are computed following a simple switching events
algorithm. The magnetic moment of a wire is “up” until the
effective field becomes lower than −Hc (switching “up–down”
occurs). If the magnetic moment of a wire is “down” and the
effective field becomes higher than +Hc, a switching “down–up”
occurs. In simulations we have used field steps small enough to
have at most one switched nanowire in a field step. After each
switching event the interaction fields are updated.

In the case of FORCs measurement starting from the descend-
ing branch of the major hysteresis loop, the applied field is initially
decreased from positive saturation to a reversal field, Hr . The
actual FORC measurement starts in this field and continues as the
applied field is increased until the positive saturated state is
obtained again. The magnetic moment measured on this curve,
m H H( , )FORC r , is dependent on both the reversal and the applied
fields. Using a set of FORCs, covering the entire surface bounded by
the major hysteresis loop, the FORC distribution is defined as the
mixed second order derivative [8]:
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As both in experiments and simulations the field steps are
finite, FORC distribution is approximated with
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where ΔH and ΔHr are the field steps used in the experiments or
simulations and χ = Δ ΔH H m H H H( , ) ( ( , )/ )FORC r FORC r is the magnetic
susceptibility measured along one FORC. This expression clearly
indicates that the value of the FORC distribution is actually defined
for each small squared area from the Preisach plane, Δ ⋅ΔH Hr . The
value associated to the mentioned area is the variation of the FORC
susceptibility on two successive FORCs having starting points
separated by ΔHr . This representation of the distribution is in fact
a FORC histogram whose values may be expressed by integers if
one considers that all the wires have the same magnetic moment.
The FORC histogram is computed as the difference between the
number of wires that switch “down–up” on the inferior FORC and
the number of wires that switch “down–up” on the superior FORC.
However many researchers using the FORC technique prefer a
continuous representation – the FORC diagram – which is the
contour plot of the FORC distribution defined by (2). In this study
we are using the FORC histogram in order to be able to perform
quantitative evaluations which are affected, sometimes dramati-
cally, when the data are numerically treated. For example, in the
technique presented by Pike and coworkers [10,15] a fitting
algorithm is suggested in order to provide data smoothing which
is necessary especially when experimental data with significant
random errors are used [15,16].

The typical shape of the ferromagnetic nanowire array FORC
diagram is a two branch structure (a “T” shape), as it is usually
observed in experiments [17–28] and in the diagram calculated for
simulated data presented in Fig. 1 [29]. The branch denoted AB
appears as an extended distribution along the interaction field axis
with lower dispersion along the coercive field axis. The other
branch denoted CD in Fig. 1(b) is less prominent than the first one
and can be interpreted, at first appearance, as a distribution of
Preisach hysterons with negligible interaction fields but with a
large dispersion of the coercive fields. The region CD is an
important specific feature for nanowire arrays observed in most
of the published experimental FORC diagrams, [17–28] being
linked to the reversal field memory effect [12,23,30–32.] Analo-
gous ridges along the interaction field axis are observed in FORC
diagrams obtained for networks of magnetic nanoelements [33,34]
and for granular thin films [35,36]. A Preisach type analysis have
been used in Ref. [12] to provide the physical explanation for both
branches of the nanowire array FORC diagram.

3. FORC histogram of the nanowire array

In order to provide a complete quantitative understanding of
the FORC histogram we propose a detailed analysis of the
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