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1. Introduction

Since the early semiquantitative analytical predictions by Hal-
dane [1] that properties for integer spin must differ qualitatively
from those for half-integer spin, the interest in studying the in-
teger spin systems has been triggered. So far, various Heisenberg
models with spin magnitude S=1 have been theoretically in-
vestigated [2-16]. Already in the earlier stage of vigorous studies
on the Haldane problem, Botet et al. [2] have indicated that the
single-ion anisotropy generated by crystal fields plays an essential
role in larger spin systems, so the effects of the single-ion aniso-
tropy on the magnetic behavior of the magnetic systems have
become an important content of research. It has been shown that
the single-ion anisotropy suppresses the quantum and thermal
spin fluctuations, and can have a fundamental influence on the
ground state phases [2,8,11,15] and thermodynamic properties [5—
7,12,16] of the spin systems with spin greater than one-half.

Because of the complexities caused by the single-ion aniso-
tropy term, various theoretical methods have been devoted, such
as quantum Monte Carlo simulation [3], coupled-cluster approx-
imation [4], exact diagonalization [8], series expansion [11,12],
double-time Green's funciton [6,9,13,14], density and transfer re-
normalization group [7,15], and modified spin wave theory [16].
Among the above methods, the double-time Green's function ap-
proach [17,18], which is applicable for all temperature regions and
all dimensions, has got a great success in the research area of
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quantum magnetism. When the single-ion anisotropy parameter is
small, the Anderson-Callen decoupling approximation (ACA) [19]
can be used to decouple the hierarchy of Green's function equa-
tion, and obtain reliable results. By using Green's function ap-
proach and the Anderson-Callen decoupling approximation, the
magnetic properties of the one, two, and three dimensional (1D,
2D and 3D) ferromagnetic (FM) spin-1 Heisenberg models with
single-ion anisotropy have been studied [9,13,20-22], as well as
the 2D and 3D antiferromagnetic (AFM) models [14,23]. It is worth
noting that in Ref. [6], a theoretical formulation of the second-
order double-time Green's function method for the 1D AFM model
with single-ion anisotropy in a phase without long-range order
was presented.

In this paper, we will use Green's function approach and the
ACA approximation to study the 1D spin-1 antiferromagnetic
Heisenberg model with the easy-axis single-ion anisotropy in the
antiferromagnetic phase, presenting the effects of the single-ion
anisotropy on the magnetic properties. As mentioned above, the
second-order Green's function method has been applied in Ref. [6],
however, where only the isotropic case without long-range order
was numerically calculated and discussed. Furthermore, the effects
of the single-ion anisotropy which are important for the 1D spin-1
AFM model were not discussed in Ref. [6]. The importance of the
effects is based on the following two points: firstly, it is known
that the role of single-ion anisotropy in phase transitions is of
particular importance when it has an opposite sign with respect to
exchange interactions, while the AFM model with the easy-axis
single-ion anisotropy just belongs to this case; secondly, in low
dimensional spin systems, the intensity of the thermal and the
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quantum fluctuations is relatively stronger than that in high di-
mensional systems, so studying the 1D systems will better reveal
the suppression of the fluctuations from single-ion anisotropy.

This paper is organized as follows: In Section 2, we present our
1D Heisenberg model and the formalism of Green's function ap-
proach. The basic self-consistent equations are obtained. In Section
3, we present our numerical results, investigating the effects of the
single-ion anisotropy and exchange anisotropy on the critical
temperature, staggered magnetization and zero-field suscept-
ibility. In Section 4, a brief conclusion is given.

2. The model and Green's function approach

The Hamiltonian of the 1D spin-1 antiferromagnetic Heisen-
berg model with the exchange anisotropy and single-ion aniso-
tropy under the staggered magnetic field can be described as

H =] [a(SXS§ + SS§) + S&Sg] - D[Z ONEDY (S@V]
J

() i

~h) Sk+h) Sk
i j (1)

where (i, j) denotes that the summation is over the nearest-
neighbor spins i and j. The parameters a and D denote the ex-
change anisotropy and the single-ion anisotropy respectively. In-
creasing D and decreasing a both lead to stronger anisotropy. Here
we only consider the easy-axis case with 0 <a < 1and D > 0. In
this parameter region, the ground-state phase is antiferromagnetic
[2], so that we write the Hamiltonian (1) in the two-sublattice
formulation as usually done in Green's function approach. A and B
denote the two sublattices. This two-sublattice treatment was also
used in linked-cluster series expansion approach in Ref. [12]. ] is
the exchange coupling constant between neighboring spins. h is
the staggered magnetic field, which makes the system to be in the
antiferromagnetic phase even in the isotropic case with a=1 and
D=0.

In the following, we apply the spin raising and lowering op-
erators Sf = S§ + iSy to simplify the above Hamiltonian, which can

be rewritten as

a
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In order to calculate the magnetic properties of this model, we
introduce the retarded Green's functions, which are defined as

(SA(0); Sai)) = — 10(O([SA (L), Sz 1), 3)
(SAi(£); Sgy)y = — 0()([SA (D), Sgi]), (4)
(Sgi(0); Say = — 10 (E)([Sg(t), SAl), (5)
(Sgi(£); Sg;)) = — 10 (E)([SE(0), Sg; 1), (6)
(SAi(t); (Sai, 2SS4y = — i0(E)[SAi(L), (Szi, 2SKil)- (7)

The equations of motion for S} (t) and Sg(t) can be written as
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Using Egs. (8) and (9) we can obtain the equations of motion for
Green's functions:
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In order to solve the system of the equations generated by Egs.
(10)-(14), we need to break the higher-order Green's functions.

We apply the random phase approximation (RPA) [17] for the
exchange coupling terms:

(SASE: Sgiy = (SEYUSAs Sgi))s (15)

and apply the Anderson-Callen approximation (ACA) [19] for the
single-ion anisotropy term:

((Si*'SE + S{SiT S7)
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