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a b s t r a c t

In this paper, a time-fractional heat conduction problem is mathematically proposed for an experimental
heat conduction process in a 3-layer composite medium. A numerical solution to the direct problem is
obtained with finite difference method. In regard to the inverse problem, the optimal order of Caputo
fractional derivative is estimated with Levenberg–Marquardt method. Comparing with the carbon–
carbon experimental data, the results show that the time-fractional heat conduction model provides an
effective and accurate simulation of the experimental data. The rationality of the proposed time-
fractional model and validity of Levenberg–Marquardt method in solving the time-fractional inverse
heat conduction problem are also manifested according to the results. By conducting the sensitivity
analysis, the feasibility of the parameter estimation is further discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus, which is widely applied to various fields
[1–3] such as biology, physics and finance, has become a booming
branch of applied mathematics. Among its applications, anomalous
diffusion or heat conduction [4–16] is considered to be one of the
most popular directions because effective and concise mathematical
simulations of these processes in heterogenous or disordered
mediums are widely provided. In latest studies, time-fractional heat
conduction models have been used to describe heat conduction
processes in one-dimensional composite mediums. Jiang and Chen
[8] provided an analytical and a numerical solution to a time-
fractional heat conduction problem in a finite one-dimensional
composite medium. Povstenko [11] delivered a time-fractional heat
conduction model in an infinite one-dimensional composite med-
ium of two layers.

Date back to 1950s, publications of inverse heat conduction
problems (IHCP) began to appear [17]. The aim of IHCP is to estimate
parameters, e.g., thermal conductivity, volumetric heat capacity, heat
flux, etc. from the interior temperature distribution [18,19]. Then
plenty of methods have been developed for IHCP and many of them,
including function specification [18,20], Newton–Raphson [21], Leven-
berg–Marquardt (LM) [22,23], conjugate gradient [23–25], function
spline [21,26], recursive least squared method [27] etc. are under the

principle of the least squares [18,19,22–30] or its regularized version
[18,23,25,28,29]. In recent years, fractional calculus started to be
brought into the IHCP. Murio [4] set up a regularized space marching
scheme to handle a time-fractional inverse heat conduction problem
(TFIHCP) with the reconstruction of boundary conditions. Ghazizadeh
et al. [6], estimating the relaxation parameter and the order of
fractional derivative simultaneously, have found that a time-
fractional single-phase-lag heat conduction constitutive model is
equivalent to a classical dual-phase-lag one. However, a TFIHCP in a
composite medium and its relevant analysis with experimental data
have not been discussed so far, which motivates us to launch the
present study.

This paper is arranged in the following layout: In Section 2, a
time-fractional heat conduction model in a 3-layer composite
medium is built. The numerical solution to the direct problem
with finite difference method is provided in Section 3. In Section 4,
Levenberg–Marquardt method has been employed to estimate the
optimal order of Caputo fractional derivative. The results are
obtained and analyzed with the experimental data in Section 5.
At last, the conclusion of this paper has been drawn in Section 6.

2. Mathematical model for time-fractional heat conduction
problem in composite medium

In this section, we consider an anomalous heat conduction
process occurring in a 3-layer composite medium. The constituent
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layers are in good thermal contact with the inner surface of the
first layer effected by the constant heat flux and the outer surface
of the third layer adiabatic from the outside environment. Based
on the fractional Fick's law, a mathematical model for this
anomalous heat conduction can be built as follows [8,11–16]:
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where Tiðx; tÞ is the temperature distribution of each layer, T0 is the
initial temperature of each layer, q0 is the value of constant heat
flux, ki is the thermal conductivity of the ith layer, Dγi represents
the fractional heat conduction coefficient of the ith layer (the
physical dimension of Dγi is ½Dγi � ¼m2s�γ [31]), ∂γ=∂tγ is the
Caputo time-fractional derivative defined as [32]
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and ∂1� γ
RL =∂t1�γ is the Riemann–Liouville time-fractional derivative

defined as [32]:
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where n is a positive integer.
Apply Riemann–Liouville integral I1�γ with respect to t to the

both sides of Eqs. (2) and (3) and neglect the initial heat flux, we
have:
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where Riemann–Liouville integral is defined as [32] :
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Therefore, the fractional heat conduction model is considered
in the form of Eqs. (1), (9), (10) and Eqs. (4)–(6).

3. Numerical solution to the direct problem

The objective of the direct problem is to solve the temperature
distribution Tiðx; tÞ from Eqs. (1), (9), (10) and Eqs. (4)–(6), where
ki, Dγi , Li, q0, T0 are known. A numerical solution to the direct
problem can be deduced based on some previous work of other
researchers [8,10] with finite difference method. To obtain the
discrete form, the homogenous segmentation of space is intro-
duced as: 0¼ L0 ¼ x1;0ox1;1o⋯ox1;N ¼ L1 ¼ x2;0ox2;1o⋯ox2;
N¼ L2 ¼ x3;0ox3;1o…ox3;N ¼ L3; with Δxi ¼ xi;j�xi;j�1. And the
homogenous segmentation of time can be introduced as: 0¼ t0o
t1ot2…otn ¼ t, with Δt ¼ tl�tl�1.

Denote Tiðxi;j; tkÞ ¼ Tk
i;j ði¼ 1;2;3; j¼ 1;2;…;N; k¼ 0;1;…;nÞ,

the governing equation (1) has the discrete form [8,10]:
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where bl ¼ ðlþ1Þ1�γ� l1�γ , then the discrete boundary conditions
corresponding to Eqs. (9) and (10) and Eqs. (4) and (5) can be
written as follows:

�k1
Tkþ1
1;1 �Tkþ1

1;0

Δx1
¼ q0½ðkþ1ÞΔt�1� γ

Γð2�γÞ ; ð13Þ

ki
Tkþ1
i;N �Tkþ1

i;N�1

Δxi
¼ kiþ1

Tkþ1
ðiþ1Þ;1�Tkþ1

ðiþ1Þ;0
Δxiþ1

; i¼ 1;2; ð14Þ

Tkþ1
i;N ¼ Tkþ1

ðiþ1Þ;0; i¼ 1;2; ð15Þ

Tkþ1
3;N �Tkþ1

3;N�1

Δx3
¼ 0; ð16Þ

and the discrete initial condition can be written as

T0
i;j ¼ T0: ð17Þ

As a result, an implicit finite difference scheme for solving Tk
i;j is

constructed with Eqs. (12)–(17). Follow Ref. [8], the scheme can be
proved to be uniquely solvable with respect to Tk

i;j. Therefore,
Tiðx; tÞ¼Tiðx; t; γÞ is able to be numerically calculated for a given
order of Caputo derivative γ.

4. Estimation of optimal order of Caputo fractional derivative
with Levenberg–Marquardt method

The estimation of optimal order of Caputo fractional derivative
falls into the category of solving time-fractional inverse heat
conduction problem (TFIHCP). For the present TFIHCP, the objec-
tive is to seek the optimal order of Caputo derivative γ to minimize
the following least squares norm:

SðγÞ ¼ ðY�TÞTðY�TÞ; ð18Þ
where Y is a vector of measured temperatures (experimental
data), T is a vector of estimated temperatures. The symbol Y and
T can be denoted as Y ¼ ðYl1 ;Yl2 ;…;YlM ÞT, T ¼ ðTl1 ðγÞ; Tl2 ðγÞ;…;

TlM ðγÞÞT, where Ylj is the measured temperature adopted from
the location x¼ xij at time node t ¼ tlj , Tlj ðγÞ ¼ Tiðxij ; tlj ; γÞ ,with i ¼
1, 2, 3 and j¼ 1;2;…;M herein. Therefore, the least squares norm
Eq. (18) can be written in the scalar form as

SðγÞ ¼ ∑
M

j ¼ 1
ðYlj �Tlj ðγÞÞ2; ð19Þ

as a kind of inverse problem, TFIHCP is ill-posed [23,29]. Conse-
quently, small errors of measured data may lead to large errors in
parameter estimations [29]. Thus a zeroth order Tikhonov reg-
ularization is usually added to the least squares norm Eq. (18) or
Eq. (19) to avoid the ill-posedness. However, the regularization
term can be neglected when the number of parameter being
estimated is few [23], then solving TFIHCP based on minimizing
the ordinary least squares norm Eq. (18) or Eq. (19) is reasonable in
the current study where the order of Caputo derivative is the only
parameter to be estimated.

Levenberg–Marquardt (LM) method, which is a combination of
Newton method that converges fast with the requirement of a
good initial guess and steepest decent method without the
necessity of a good initial guess [23], is a widely used technique
for solving nonlinear least squares problem. The LM iterative
scheme with respect to the order of Caputo derivative being
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