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a b s t r a c t

We use a theoretical mesoscopic model accounting for memory and nonlocal effects in thermoelectricity
in order to investigate how the figure-of-merit in cylindrical thermoelectric nanodevices is conditioned
in frequency-dependent situations. Two different situations, regarding the relative values of the
particles' mean-free path and the characteristic size of the system, are analyzed. It is shown that in
both situations the performances of the thermoelectric devices are reduced. However, nonlocal effects
may be used as an aiding tool to have less marked reductions in those performances.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Alternative power sources based on energy harvesting are
promising candidates to substitute batteries due to their ability
to extract unlimited power from the environment or secondary
processes, as well as to attain fully autonomous systems without
periodical human interventions. Due to the large amount of
residual heat yielding from the current energy generation tech-
nology based on fossil fuels, thermoelectric energy harvesters have
received special attention in recent years. Thermoelectric devices
offer a very attractive source of energy since they do not have
moving parts, create pollution, or make noise.

In practical applications, the definition of a “good thermo-
electric device” is usually related to the dimensionless product ZT,
with T being the operating temperature, and Z the so-called figure-
of-merit, defined as

Z ¼ ϵ2σe
λ

ð1Þ

wherein ϵ is the Seebeck coefficient, σe the electrical conductivity,
and λ the total thermal conductivity.

In thermoelectric materials heat is carried both by phonons and
by electrons, and by definition, in Eq. (1) the total thermal
conductivity is such that

λ¼ λpþλe ð2Þ

with λp being the phonon contribution to the thermal conductivity,
whereas λe means the electron contribution to it [1–3].

Since the higher ZT, the higher the efficiency of a thermo-
electric device, in order to widen the applications of thermo-
electric power generators, in the last decades there has been a
tremendous amount of researches to improve the values of ZT
beyond those of bulk materials, which show, instead, low efficien-
cies. However, ZT has remained approximately equal to 1 for the
past several decades in the case of archetype materials at all
temperature ranges. These materials include antimony (Sb2Te3)
and bismuth tellurides (Be2Te3) for room temperature applica-
tions, lead telluride (PbTe) at moderate temperatures, and silicon-
germanium (SiGe) alloys at high temperatures.

One of the primary challenges in developing advanced thermo-
electric materials is decoupling ϵ, σe and λ which are typically
strongly interdependent in such a way that an increase in ϵ usually
results in a decrease in σe, and a decrease in σe produces a decrease
in the electronic contribution to λ, following from the Wiede-
mann–Franz law.

Indeed, if the characteristic dimension of the material (or the
system) is shortened, the new variable of length scale also
becomes available for the control of the materials' properties. In
particular, as the system size decreases and approaches nanometer
length scales, new opportunities are allowed to vary the afore-
mentioned parameters quasi-independently. Nanomaterials,
therefore, provide an interesting avenue to achieve this goal, for
example, making nanocomposites, adding nanoparticles to a bulk
material, or employing one-dimensional nanostructures [4,5].
Nanosystems offer the possibility of an additional control of the
transport coefficients [6–9]. For instance, whenever the character-
istic size of the system is comparable to the mean-free path (mfp)
ℓ of the different heat carriers (phonons, electrons, holes, etc.) it is
known that a thermal conductivity reduction can be realized over

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physb

Physica B

http://dx.doi.org/10.1016/j.physb.2014.08.012
0921-4526/& 2014 Elsevier B.V. All rights reserved.

E-mail address: antsel@gmail.com

Physica B 456 (2015) 57–65

www.sciencedirect.com/science/journal/09214526
www.elsevier.com/locate/physb
http://dx.doi.org/10.1016/j.physb.2014.08.012
http://dx.doi.org/10.1016/j.physb.2014.08.012
http://dx.doi.org/10.1016/j.physb.2014.08.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2014.08.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2014.08.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2014.08.012&domain=pdf
mailto:antsel@gmail.com
http://dx.doi.org/10.1016/j.physb.2014.08.012


a wide temperature range, or the power factor can be increased at
the same time by increasing ϵ more than σe is decreased [10,11].

Although from experimental evidences it is very clear the
importance of using nanotechnologies in thermoelectricity, the
search of a very good thermoelectric device is still far from its final
solution. This principally because the physics at nanoscale still
presents several dark points, as for instance the role played by
memory, nonlocal and nonlinear effects [12,13,6,8,7].

In particular memory effects may drastically influence, for
example, the behavior of nanodevices at high frequencies
[14,15]. In fact, in the simplest description of relaxational effects
in the bulk for phonon heat transport, the heat flux q is given by
the Maxwell–Cattaneo equation

τpDtqþq¼ �λ∇T ð3Þ

where τ is the relaxation time due to the resistive interactions
(momentum not conserved) between the heat carriers, and the
symbol Dt means the material derivative. The Fourier transform of
this equation leads to an effective frequency-dependent thermal
conductivity of the form

λeff ðωÞ ¼ λ

1þðωτpÞ2
ð4Þ

which points out that the higher the frequency ω, the smaller the
thermal conductivity.

This result may be interesting for thermoelectric applications,
since small values of the thermal conductivity could lead to an
enhancement of Z, according to Eq. (1).

Indeed, the analysis and modelization of heat transport in
nanosystems are more complex since it is also required to pay a
special attention to the boundary conditions [3]. The interest on wall
effects, related to phonon–wall interactions [16,17], recently surged
with the synthesis of nanowires with rough walls [18,19]. Further-
more, in thermoelectricity, one has to monitor also the frequency
behavior of other material functions. Therefore, in the present paper,
from a phenomenological point of view, we explore the frequency
dependence of Z in cylindrical nanowires in order to point out
whether the performances of thermoelectric devices may be
enhanced by coupling relaxational and nonlocal effects in high-
frequencies situations, or not. It is important to note that the
approach used in the present paper rests on a mesoscopic level, as
our main aim is to provide a first rough (but simple to obtain)
estimation of the response of a thermoelectric device in frequency-
dependent situations. In this sense, the present analysis should be
only viewed as a first step towards more detailed microscopic
scrutinies.

The structure of the paper is the following. In Section 2 we
introduce transport equations with relaxational and nonlocal
effects in heat and electric transport. In Section 3 we derive the
frequency-dependent behavior of the figure-of-merit by modeling
the interactions of the different heat carriers with the boundaries.
In Section 4 we draw the main conclusions.

2. Enhanced thermoelectric equations with relaxational and
nonlocal effects

On microscopic grounds both electrons and phonons may be
viewed as a free-particle gas in a box [20]. In nonequilibrium
mechanics, the statistical behavior of a thermodynamic system far
from its thermodynamic equilibrium is described through the
Boltzmann transport equation (BTE), which in the relaxation-
time approximation reads:

∂t f þ � ∇rf þ F
m

�∇vf ¼ � f � f 0
τ

ð5Þ

wherein the subscripts r and v in the nabla operators represent
the variables of the gradient, i.e., they are the position and the
velocity of a set of particles, respectively. Moreover, in Eq. (5)
f ðr; v; tÞ is the probably-density function, f0 represents the equili-
brium distribution of the carriers, and τðr;kÞ is their relaxation
time, k being the wave vector of the particle. In the BTE, f0 is given
by the Bose–Einstein distribution function (BEdf) in the case of
phonons, i.e.,

f 0 ¼ ðeℏν=kBT �1Þ�1

wherein ℏ¼ h=ð2πÞ with h being the Planck constant, ν is the
angular frequency, and kB is the Boltzmann constant. In the case of
electrons, instead, f0 is expressed by the Fermi-Dirac distribution
function (FDdf), i.e.,

f 0 ¼ ðeðεi �μeÞ=kBT þ1Þ�1

with εi being the energy of the single-particle state, and μe is the
chemical potential.

Indeed, it is possible to find several situations, as for example
whenever the quantities ðεi�μeÞ and ℏν are much larger than kBT ,
in which one can ignore the 71 in the denominator of f0, in order
that the BEdf and the FDdf reduce to the Boltzmann distribution
function [20]. In these cases, on intuitively ground, the solution of
the BTE both for phonons, and for electrons would lead to
equations showing the same mathematical behavior.

Starting from these considerations and in accordance with the
basic principles of Extended Irreversible Thermodynamics [7,6], in
Refs. [21,3] the following generalized transport equations to
describe heat and electric transport with thermoelectric coupling
have been considered:

τpDtqðpÞ þqðpÞ ¼ �λp∇Tþℓ2
pð∇2qðpÞ þ2∇∇ � qðpÞÞ ð6aÞ

τeDtqðeÞ þqðeÞ ¼ �ðλeþϵΠσeÞ∇Tþℓ2
e ð∇2qðeÞ þ2∇∇ � qðeÞÞ

þΠσeE ð6bÞ

τeDtiþi¼ σeðE�ϵ∇TÞþℓ2
e ð∇2iþ2∇∇ � iÞ ð6cÞ

In these equations i is the electric-current density, E is the
electric field, and Π is the Peltier coefficient. The basic idea lying
under these equations is that the local heat flux shows both a
phonon contribution qðpÞ, and an electron contribution qðeÞ in such
a way that q¼ qðpÞ þqðeÞ.

Referring the readers to Section 4 for more comments about
Eqs. (6), here let us only comment about the different material
functions included therein. In Eqs. (6) τp and τe represent, respec-
tively, the relaxation time due to phonons interactions and that
due to electrons interactions. In more detail, the relaxation time τp
may be related to the resistive mechanisms between the different
particles in such a way that, through the Matthiessen rule, it is
given as

τ�1
p ¼ τ�1

u þτ�1
i þτ�1

d þτ�1
p�wþτ�1

e�p

where τu is the relaxation time of umklapp-phonon collisions,
τi the relaxation time of phonon-impurity collisions, τd the relaxa-
tion time of phonon-defect collisions, and τe�p is the electron–
phonon scattering-time [22]. Similarly, the electron relaxation
time τe may be defined as

τ�1
e ¼ τ�1

e�eþτ�1
e�p

with τe�e being the electron–electron scattering-time [23,24]. In
principle, in defining both τp and τe further relaxation times, account-
ing for the phonon–wall and electron–wall interactions, should be
taken into account. In our approach these interactions will be
introduced by means of suitable boundary conditions in Section 3.

Moreover, in Eq. (6a) ℓp means the mfp of phonons, which is
related both to resistive, and to the normal scattering of phonons
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