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a b s t r a c t

We study finite-temperature properties of the strongly interacting bosons in three-dimensional lattices
by employing the combined Bogoliubov method and the quantum rotor approach. Based on the mapping
of the Bose–Hubbard Hamiltonian of strongly interacting bosons onto U(1) phase action, we study their
thermodynamic phase diagrams for several lattice geometries including simple cubic, body, as well as
face-centered lattices. The quantitative values for the phase boundaries obtained here may be used as a
reference for emulation of the Bose–Hubbard model on a variety of optical lattice structures in order to
demonstrate experimental-theoretical consistency for the numerical values regarding the location of the
critical points.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the ground state of a system of repulsively
interacting bosons in a periodic potential can be either in a superfluid
state or in a Mott-insulting state, characterized by integer boson
densities and the existence of a gap for particle–hole excitations [1].
One key piece of evidence for the Mott insulator phase transition is
the loss of global phase coherence of the matter wave function.
However, there are many possible sources of phase decoherence in
these systems. Substantial decoherence can be induced by quantum
or thermal depletion of the condensate. Experimentally, an enor-
mous progress was made in the experimental study of cold atoms in
optical lattices [2]. Cold atoms interacting with a spatially modulated
optical potential resemble in many respects electrons in ion-lattice
potential of a solid crystals. However, optical lattices have several
advantages with respect to solid state systems. They can be made to
be largely free from defects and can be controlled very easily by
changing the laser field properties. Finally, ultra-cold atoms confined
in optical lattice structure provide a very clean experimental realiza-
tion of a strongly correlated many-body problem [3]. Moreover, in
contrast to solids, where the lattice spacings are generally of order of
Angstrom units, the lattice constants in optical lattices are typically
three order of magnitude larger. Furthermore, variety of multi-

dimensional lattices can be experimentally obtained by appropriate
setup of laser beams including cubic face-centered and body-
centered lattices [4,5]. For example, a three dimensional (3D) lattice
can be created by the interference of at least six orthogonal sets of
counter propagating laser beams. Although the initial system can be
prepared at a relatively low temperature, the ensuing system after
ramp-up of the lattice has a temperature which is usually higher due
to adiabatic and other heating mechanisms. Recent experiments have
reported temperatures on the order of kBT � 0:9t where t, the
hopping parameter, measures the kinetic energy of bosons [6]. At
such temperatures, the effects of excited states become important,
motivating investigations of the finite temperature phase diagrams,
showing the interplay between quantum and thermal fluctuations.

Therefore, the goal of this paper is to provide a study of the
combined effects of a confining lattice potential and finite tem-
perature on the state diagram of the Bose–Hubbard model in three
dimensions in strongly correlated regime where the standard
Bogoliubov treatment fails to describe the system and a more
general framework is required. Usually, studies of bosons in optical
lattices have been conducted at zero temperature and in two
dimensional systems, dealing with Mott insulator-superfluid tran-
sition. In the present work, we explore the phase transition from
the Mott to the superfluid state in a system of strongly interacting
bosons on a cubic lattice with the chemical potential and tem-
perature as the control parameters. Furthermore, we employ the
quantum rotor method, which uses the module–phase represen-
tation of strongly correlated bosons. This introduces a conjugate to
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the density of bosons U(1) quantum phase variable, which acq-
uires dynamic significance from the boson-boson interaction. The
quantum rotor approach has been verified with other methods [7],
like quantum Monte Carlo [8] or DMFT [9] giving coinciding
results.

The plan of the paper is as follows: in Section 2, we introduce
the microscopic Bose–Hubbard model relevant for the description
of strongly interacting bosons. Furthermore, in the following
Section, we briefly present technical aspects of our quantum rotor
approach and in Section 4 we calculate the temperature phase
diagrams. Finally, we conclude in the Section 5.

2. Model Hamiltonian

The simplest non-trivial model that describes interacting
bosons in a periodic potential is the Bose Hubbard Hamiltonian.
It includes the main physics that describe strongly interacting
bosons, which is the competition between kinetic and interaction
energy. The realization of the Bose–Hubbard Hamiltonian using
optical lattices has the advantage that the interaction matrix
element U and the tunneling matrix element t can be controlled
by adjusting the intensity of the laser beams. Its Hamiltonian in a
second quantized form reads [1]

H¼ �t ∑
〈r;r0〉

½a†ðrÞaðr0Þþa†ðr0ÞaðrÞ�

þU
2
∑
r
n2ðrÞ�μ∑

r
nðrÞ: ð1Þ

The first term is the kinetic energy of bosons moving in a given
lattice within a tight-binding scheme, where t represents nearest
neighbors tunneling matrix, r and r0 are lattice sites and 〈r; r0〉
denotes summation over nearest neighbors. The following intro-
duces inter-bosonic correlations with U being the strength of the
on-site repulsive interaction of bosons. Furthermore, μ ¼ μþðU=2Þ,
where μ is a chemical potential controlling the average number
of bosons. The operators a†ðrÞ and aðr0Þ create and annihilate
bosons, while the boson number operator nðrÞ ¼ a†ðrÞaðrÞ and a
total number of sites is equal to N. The Hamiltonian and its
descendants have been widely studied within the last years. The
phase diagram and ground-state properties include the mean-field
ansatz [1], strong coupling expansions [10–12], the quantum rotor
approach [13], methods using the density matrix renormalization
group DMRG [14–17], and quantum Monte Carlo QMC simulations
[18–20].

3. U(1) quantum rotor formulation

The quartic form of the Hamiltonian makes it very difficult to
deal with it in all the different regimes. The aim of this chapter is
to rewrite it so that a systematic approach can be developed to
accommodate strongly interacting regime, In the following, we use
a theory that goes beyond the simple Bogoliubov approximation
which has been recently developed that incorporates the phase
degrees of freedom via the quantum rotor approach to describe
regimes beyond the very weakly interacting one [21]. This scenario
provided a picture of quasi-particles and energy excitations in the
strong interaction limit, where the transition between the super-
fluid and the Mott state is be driven by phase fluctuations. Taking
advantage of the macroscopically populated condensate state, we
have separated the problem into the amplitude of the Bose field
and the fluctuating phase that was absent in the original Bogoliu-
bov problem [22].

The statistical sum of the system defined in Eq. (1) can
be written in a path integral form with use of complex fields,
aðrτÞ depending on the “imaginary time” 0rτrβ� 1=kBT , (with

T being the temperature) that satisfy the periodic condition
aðrτÞ ¼ aðrτþβÞ:

Z ¼
Z

½DaDa�e�S½a ;a�; ð2Þ

where the action S is equal to

S½a; a� ¼
Z β

0
dτ HðτÞþSB ½a; a�; ð3Þ

where the Berry term is

SB½a; a� ¼∑
r

Z β

0
dτ aðrτÞ ∂

∂τ
aðrτÞ:

Now, we are briefly introducing the quantum rotor approach [23].
The fourth-order term in the Hamiltonian in Eq. (1) can be
decoupled using the Hubbard–Stratonovich transformation with
an auxiliary field VðrτÞ:

e�ðU=2Þ∑r

R β

0
dτn2ðrτÞ

p
Z DVffiffiffiffiffiffi

2π
p e

∑
r

R β

0
dτ½� ðV2ðrτÞ=2UÞþ iVðrτÞnðrτÞ�

: ð4Þ

The fluctuating “imaginary chemical potential” iVðrτÞ can be
written as a sum of static V0ðrÞ and periodic function:

VðrτÞ ¼ V0ðrÞþδVðrτÞ; ð5Þ
where using Fourier series:

δVðrτÞ ¼ 1
β

∑
1

ℓ ¼ 1
δVðrωℓÞðeiωℓτþe� iωℓτÞ; ð6Þ

with the Bose–Matsubara frequencies are ωℓ ¼ 2πℓ=β and ℓ¼
0; 71; 72;….

3.1. Phase action

Introducing the U(1) phase field ϕðrτÞ via the Josephson-type
relation:

_ϕðrτÞ ¼ δVðrτÞ ð7Þ
with _ϕðrτÞ ¼ ∂ϕðrτÞ=∂τ we can now perform a local gauge trans-
formation to new bosonic variables:

aðrτÞ ¼ bðrτÞeiϕðrτÞ; ð8Þ
where

ζðrτÞ ¼ eiϕðrτÞ ð9Þ
with ϕðrτÞ being U(1) phase variable. Concerning the amplitude in
Eq. (8), the operator splits into a sum:

bðrτÞ ¼ b0þδbðrτÞ: ð10Þ
Since, the strongly correlated limit is dominated by phase fluctua-
tions, we neglect a contribution coming from δbðrτÞ in subsequent
calculations. After the variable transformations the statistical sum
becomes

Z ¼
Z

½DbDb�½Dϕ�e�S½b ;b;ϕ� ð11Þ

with the action

S½b; b;ϕ� ¼ S0½ϕ�þSB½b; b�

�t ∑
〈r;r0〉

Z β

0
dτ½eiϕðr0τÞ� iϕðrτÞbðrτÞbðr0τÞþh:c:�

þ∑
r

Z β

0
dτ½Ujb0j2�μ�bðrτÞbðrτÞ ð12Þ
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