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a b s t r a c t

We investigate the quantum Riemannian metric and the Euler characteristic number of the Bloch states
manifold in a two-band lattice model, where a topological phase transition from the normal to the Chern
insulator occurs. We derive the topological Euler number of the band from the Gauss–Bonnet theorem
on the closed Bloch states manifold in the first Brillouin zone, where the Riemannian metric of the states
manifold is established by the real part of the quantum geometric tensor in the 2D quasi-momentum
space. Meanwhile, we show that the imaginary part of the geometric tensor corresponds to the Berry
curvature which leads to the Chern number characterization of the band insulator. We discuss the
topological numbers induced by the geometric tensor analytically in the case of two-band Hamiltonian
and characteristic the zero-temperature phase diagram by the Euler number and first Chern number,
respectively.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The geometric and topological properties have been key
ingredient in understanding the novel states in quantum con-
densed matters. Since the finding of the Berry phase and its
holonomy interpretation in the Uð1Þ line bundle with the parallel
transport of the quantum states in the cyclic adiabatic evolutions
[1,2], many important findings on the topological nature of the
quantum matter have come into physics, i.e., the quantized Hall
conductance [3–5], adiabatic pumping [6,7], topological insula-
tors and superconductivity [8–12], and recently the fractional
Chern insulators in flat bands [13–15]. As a more general
covariant tensor than the Berry curvature on the Hilbert space
geometry, the quantum geometric tensor (QGT) [16–24] defined
on the manifold of quantum states is naturally expected to shed
some light on the understanding of quantum phase transitions
(QPTs) in many-body systems [25–27]. Historically, the real part
of QGT as a Riemannian metric was first proposed by Provost and
Valee in order to define a local Uð1Þ gauge invariant quantum
distance between two quantum states in some parameterized
Hilbert space. This effort results to a Riemannian structure of the
quantum states manifold, and the corresponding Riemannian
metric is given by the real part of the geometric tensor.

Remarkably, its imaginary part was later found is nothing but
the Berry curvature.

Recent studies [19,20,28] have shown that the ground-state
geometric tensor can provide a unified approach of the fidelity
susceptibility [29] and the Berry curvature to witness the QPTs
[30–33]. It is shown that the underlying mechanism is the singular
and scaling behavior of the QGT in the vicinity of the critical
points. Particularly, the Riemannian metric as the real part of the
QGT is recognized as the leading term of the fidelity [34] which is
the overlap of two ground states associated to infinitesimally close
parameters. Generally, the Riemannian metric will exhibit the
divergent behavior in the quantum critical region in the thermo-
dynamic limit. In the approach of Berry phase, it was argued that a
non-contractible ground-state Berry phase in the loop over the
parameter space is associated to QPTs. This fact indicates that the
critical points associated to the divergence of the Berry curvature
in the thermodynamic limit. Particularly, a scaling analysis of this
QGT in the vicinity of the critical points has been performed. On
the other hand, the previous studies on the ground state QGT are
mainly focused on the local properties, i.e., fidelity susceptibility
and the partial derivatives of Berry phase near the critical points,
and then only the phase boundaries can be witnessed by this
approach.

Very recently, a topological Euler number [35,36], derived from
the real part of the QGT, has been introduced to characterize the
topological nature of the Bloch band in gapped fermionic systems.
The Euler number endows the band insulators with a new
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topological number index in addition to the Chern number. In this
approach, the Euler number can be derived from the Gauss–
Bonnet theorem on the closed Bloch states manifold in the first
Brillouin zone, where the Riemannian metric of the states mani-
fold is established by the real part of the quantum geometric
tensor in the quasi-momentum space.

In this work, we choose a 2D lattice model as an example
which exhibits a non-trivial topological phase transition with
time-reversal symmetry broken. This model was first introduced
by Qi et al. [37] and can be physically realized in Hg1� xMnxTe=
Cd1�xMnxTe quantum wells with a proper amount of Mn spin
polarization [38]. We discuss the geometric tensor exactly in the
two-band system, which gives the Riemannian metric and Berry
curvature of band, respectively. Then we obtain the topological
Euler number of the band from the Gauss–Bonnet theorem on the
closed Bloch states manifold in the first Brillouin zone, which is
based on the Riemannian metric of the Bloch states manifold given
by the real part of the QGT. As a comparison, the first Chern
number is also obtained by the integral of the Berry curvature as
the imaginary part of the geometric tensor over the first Brillouin
zone. Finally, we give the phase diagram of the model distin-
guished by the Euler number and the first Chern number,
respectively.

2. Riemannian metric, Berry curvature and the quantum
geometric tensor

To begin with, we introduce the notions of the quantum
Riemannian metric and the geometric tensor on the quantum
states manifold. The Riemannian metric can be derived from a
gauge invariant distance between two states on the U(1) line
bundle. Following the steps introduced by Provost and Vallee, we
first consider a family fφðsÞg of normalized vectors of Hilbert space
which is based on an n-dimensional parameter s¼ ðs1;…; snÞARn.
The distance between two close vectors in the family fφðsÞg can be
developed up to second order as follows:

‖φðsþdsÞ�φðsÞ‖2 ¼∑
μν
〈∂μφðsÞj∂νφðsÞ〉 dsμ dsν: ð1Þ

Separating the Hermitian product into the real and the imaginary
parts 〈∂μφðsÞj∂νφðsÞ〉¼ γμνþ iσμν, and we have γμνðsÞ ¼ γμνðsÞ,
σμνðsÞ ¼ �σμνðsÞ. Thus its imaginary parts σμν will be canceled
out in the summation of the quantum distance, and then Eq. (1)
reads

‖φðsþdsÞ�φðsÞ‖2 ¼∑
μν
γμνðsÞdsμ dsν: ð2Þ

However, the quantities γijðsÞ cannot be regarded as a metric to
measure the quantum distance because it is not gauge invariant in
the Uð1Þ gauge transformation of φðsÞ. This can be clearly seen as
follows: For the same physical states φðsÞ and φ0ðsÞ ¼ eiαðsÞφðsÞ
define on the same point in the parameter space, we have
γμν 0ðsÞ ¼ Re〈∂μφ0ðsÞj∂νφ0ðsÞ〉, which is generally different from
γμνðsÞ. More precisely, we have to make the metric tensor invariant
to ensure an invariant quantum distance under the Uð1Þ gauge
transformation of the same physical states. It can be verified that a
Uð1Þ gauge-invariant metric tensor can be constructed as

gμνðsÞ ¼ γμνðsÞ�AμðsÞAνðsÞ; ð3Þ

where AμðνÞðsÞ ¼ i〈φðsÞj∂μðνÞφðsÞ〉 is nothing but the Berry–Simon
connection. It can be verified that this quantity defined by
Eq. (3) is a symmetric positive-definite Riemannian metric.

Now we introduce the quantum geometric tensor:

Qμν ¼ 〈∂μφðsÞj½1�PðsÞ�j∂νφðsÞ〉; ð4Þ

where PðsÞ : ¼ jφðsÞ〉〈φðsÞj is the projection operator. The geo-
metric tensor can be rewritten as Qμν ¼ gμν� iFμν=2, where

gμν ¼ Re Qμν ð5Þ

can be verified as a Riemannian metric (the Fubini-Study metric
on the Projective Hilbert space), which establishes a Riemannian
manifold of the Bloch states, and then the quantum distance can
be written as dS2 ¼∑μ;υ Re Qμνdk

μ dkυ. The term Fμν ¼ �2 Im Qμν
which has been canceled out in the summation of the distance due
to its antisymmetry, but can be associated to a 2-form
F ¼∑μ;υFμνdk

μ4dkν, which is nothing but the Berry curvature.

3. The model

Historically, a two-band lattice model with a nonzero Chern
number was first proposed as by Haldane [23] which was a
honeycomb lattice model with imaginary next-nearest-neighbor
hopping. Haldane find the two different symmetries breaking
about the space reflection and the time-reversal can be classified
by the Chern numbers which reflect the topology of the ground-
state.

The Bloch Hamiltonian is generally given by HðkÞ ¼ εðkÞI2�2þ
∑3

α ¼ 1dαðkÞσα, where I2�2 is the 2�2 identity matrix and σα the
three Pauli matrix. The diagonalization of HðkÞ is straightforward

and the eigenvalues can be written as E7 ðkÞ ¼ εðkÞ7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑3

α ¼ 1d
2
αðkÞ

q
,

and eigenvectors as

uðkÞþ ¼
cos θ=2

eiΦ sin θ=2

 !
;uðkÞ� ¼

� sin θ=2
eiΦ cos θ=2

 !
ð6Þ

where Φ¼ arctan d1ðkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21ðkÞþd22ðkÞ

q
, and θ¼ arccos d3ðkÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d21ðkÞþd22ðkÞþd23ðkÞ
q

.
Here we choose the following two-band model as an example

because it is one of the simplest models that exhibit the topolo-
gical non-trivial states. In this model, the Bloch Hamiltonian is

HðkÞ ¼ sin kxσ1þ sin kyσ2þðmþ cos kxþ cos kyÞσ3; ð7Þ
that is, the coefficients are given by εðkÞ ¼ 0, d1 ¼ sin kx, d2 ¼
sin ky and d3 ¼mþ cos kxþ cos ky. This model exhibits a non-
trivial topological quantum phase transition from the normal
insulator to Chern insulator, which was first introduced by Qi
et al. [37] and can be physically realized in Hg1�xMnxTe=
Cd1� xMnxTe quantum wells with a proper amount of Mn spin
polarization [38].

In the thermodynamic limit, the QGT of the Bloch band can be
naturally defined on the 2D quasi-momentum space k¼ ðkx; kyÞ,
and the QGT of the lower Bloch band can be obtained by
substituting uðkÞ� into Eq. (4), then we have

Qxy ¼
1
4
ð∂kxθ∂kyθþ∂kxΦ∂kyΦ sin 2θÞ

þ1
4
i sin θð∂kxΦ∂kyθ�∂kyΦ∂kxθÞ: ð8Þ

The corresponding Riemannian metric and Berry curvature
can be obtained by using the relation gxy ¼ Re Qxy and Fxy ¼
�2 Im Qxy. The direct calculations of geometric tensor Qxy is
tedious, however, it can be verified that the determinant of the
Riemannian metric can be expressed as (for details see Appendix A)

det g¼ ðIm QxyÞ2 ¼
d̂ � ∂kx d̂ � ∂ky d̂

4

 !2

¼ ðm cos kx cos kyþ cos kxþ cos kyÞ2
16½ðmþ cos kxþ cos kyÞ2þ sin 2kxþ sin 2ky�3

ð9Þ
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