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a b s t r a c t

In this study, nonlinear vibration and stability of a fluid-conveying nanotube (FCNT), elastically coupled
to a smart piezoelectric polymeric beam (PPB) is investigated based on nonlocal elasticity theory, Euler–
Bernoulli beam model and energy approach. In order to obtain an active instability control of FCNT, the
PPB is longitudinally polarized as an actuator while in the absence of an imposed electric field it is also
possible to be used as an alarm biosensor. Simulating the above smart coupled nanobeam system alike
the double nanobeam systems (which are relatively developed by other authors) leads to obtain
nonlinear differential equations of motion. The linear natural and damping frequencies are achieved by
ignoring all the system nonlinearities which are then considered to obtain nonlinear frequencies using
an iterative method. The effects of geometric nonlinearity, small scale parameter, coupled medium
constants, Knudsen number, temperature change, aspect ratio and external applied voltage on critical
flow velocity are studied in details. It is concluded that applying an electric voltage on PPB will increase
the stability of FCNT. It is hoped that this research will provide a new approach to smart instability
control of FCNTs which is no yet reported.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is commonly believed that the nanotechnology will spark a series
of industrial revolutions in the following decades and the discovery of
nanotubes (e.g. carbon nanotubes in 1991 [1] and boron nitride
nanotubes in 1995 [2]) is one of the most significant breakthroughs
that could accelerate the development of nanotechnology. In general,
nanotechnology encompasses the production and application of
physical, chemical and biological systems in the nanometer–micro-
meter range, as well as the integration of the resulting nanostructures
into larger systems to fabricate novel nanodevices [3,4]. Recently, the
nanotubes with an internal fluid have been attracted more attention
amongst researchers due to their widespread potential applications in
biological systems (e.g. biosensing, biological separation, molecular
imaging), medicine (e.g. drug delivery), chemistry (e.g. chemical
experiments, fuel cells), physics (e.g. optomechanical systems) and
other engineering fields [5–7]. In this regard, the fluid induced
vibration, the vibration due to the flowing internal fluid, of FCNTs
has been an area of active researches [8–10].

In addition, the recent interesting field of the nanotechnology
is the complex coupled nanobeam systems (i.e. macro coupled
beam systems) that includes connected two or more nanobeams

[11] and can be used to fabricate novel potential electronic, optical,
magnetic, mechanical, and chemical/biological devices with appli-
cations ranging from sensors to computation and control [12–15].
The nanobeams coupling connection of these systems are con-
sidered usually by an elastic medium (i.e. polymer gels) or van der
Waals forces [16]. In this regard, Murmu and Adhikari [17] studied
the nonlocal effects of the double-nanorod systems on the axial
vibration. In their numerical analysis approach, the nonorod
considered to be CNT and concluded that the fundamental natural
frequency of axially vibrating nanorods has a decreasing nature
with the increasing nonlocal parameter. In another work of these
authors, the axial instability of double-nanobeam systems is also
investigated [18]. Transverse vibration of the elastically connected-
carbon nanotube system due to a moving nanoparticle is studied
by Simsek [19]. He employed EB beam theory in the frame of
nonlocal elasticity theory to simulate the coupled nanotube
system. In a similar vision, Ghorbanpour and Roudbari [20] have
investigated the nonlocal vibrations of a coupled boron nitride
nanotubes (BNNTs) system under a moving nanoparticle based on
piezoelastic theory and Euler–Bernoulli beam model. Altogether,
according to the above discussion, lack of proper research to
instability prediction as well as instability smart control of FCNTs
can be clearly felt. Hence, in this study we aim to demonstrate
a novel smart coupled nanobeam system (see Section 4) and then
is analyzed to yield the vibration response of FCNT in presence of
external voltage imposed on PPB.
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2. Piezoelectric constitutive relation for PPB

The subsequent characterization of electromechanical coupling
covers the various classes of piezoelectric materials. Details with
respect to definition and determination of the constants describ-
ing these materials have been standardized by the Institute of
Electrical and Electronics Engineers [21]. In this regards, stresses
and strains on the mechanical side, as well as flux density and field
strength on the electrostatic side, may be combined as follows
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where σf g; εf g; Df g and Ef g are stress, strain, electric displacement
and electric field vectors, respectively, and C½ �; e½ � and Af g are
matrices of elastic stiffness, piezoelectric and dielectric constants,
respectively. Furthermore, the coefficients of thermal expansion,
pyroelectric and temperature change are shown by λf g; p
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and

ΔΘ, respectively. Considering Euler–Bernoulli beam model for the
PPB above constitutive equations are simplified as follows
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where x denotes the longitudinal direction of the PPB. It is also
noted that the longitudinal component of the electric field can be
written in terms of electric potential ϕ as [22]
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: ð3Þ

3. Nonlocal elasticity theory

Small-scale effect is studied in nano and micro mechanics often
using Eringen’s nonlocal elasticity theory. Based on this theory, the
stress and the electric displacement at a reference point depend
not only on the components of the strain and electric-field at the
same position, but also on all other points of the body. Thus, the
well-known relations between nonlocal and classical stresses is
expressed as [23]

1� e0að Þ2∇2
� 	

σf gnonlocal ¼ σf gclassical; ð4Þ

and for the piezoelectric materials, we have [24,25]

1� e0að Þ2∇2
� 	

σf gnonlocal ¼ σf gclassical; ð5� aÞ

1� e0að Þ2∇2
� 	

Df gnonlocal ¼ Df gclassical; ð5� bÞ

where σf g and Df g are respectively, the components of nonlocal
stress and electric displacement tensors, e0a is the small-scale
parameter and ∇2 represents the Laplace operator. The above
implicit relations couple the nonlocal stress and electric displace-
ment with the classical stress and electric displacement. To
achieve explicit relations, an iterative-based method can be pre-
sented for the above equations as follows

σf giþ1
nonlocal ¼ e0að Þ2∇2 σf ginonlocalþ σf gclassical; ð6� aÞ

Df giþ1
nonlocal ¼ e0að Þ2∇2 Df ginonlocalþ Df gclassical; ð6� bÞ

σf g0nonlocal ¼ σf gclassical; ð6� cÞ

Df g0nonlocal ¼ Df gclassical; ð6� dÞ
where i is the iteration number and the first iteration can be
started by local results. It is clear that accuracy of the nonlocal
results will be improved by increasing the number of iterations as
is shown graphically in the numerical results section.

4. Modeling and kinematic of the smart coupled nanobeam
system

Consider a vertically coupled nanobeam system as shown in
Fig. 1. In the present study the carbon nanotube (CNT) containing
steady nano-flow is considered as FCNT which is elastically
coupled by an axially polarized PPB (e.g. made of poly-vinylidene
fluoride [26]). The CNT and PPB are attached by innumerable
longitudinal and vertical springs for modeling the effect of
enclosing elastic medium, forces due to nanooptomechanical
effects or van der Waals forces [12–15]. Different values of spring
stiffness for different polymers can be used for the study. The
Winkler spring modulus as well as Pasternak shear modulus in the
Pasternak environment model are utilized for evaluating the
stiffness of vertical and longitudinal springs, respectively [27–
29]. Based on Euler–Bernoulli beam model [30], the components
of axial and transverse displacement field, denoted by ~uðx; z; tÞ and
~wðx; z; tÞ respectively, for both of CNT and PPB are expressed as

~ui x; z; tð Þ ¼ ui x; tð Þ�z∂w
i x;tð Þ
∂x

~wi x; z; tð Þ ¼wi x; tð Þ

8<
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where u and w are the components of the middle surface
displacement (i.e., displacement at z¼ 0) and x and z are the
coordinates taken along the length and the thickness of the beams
(see Fig. 2). Additionally, the super indexes C and P indicate the
CNT and PPB, respectively. The non-zero strain–displacement
relationships for both of CNT and PPB and by omitting the large
strain terms except the square of ð∂w=∂xÞ (which indicates the
rotation of a transverse normal line in the beam), are given by
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5. Energy functions

5.1. Energy associated with CNT

The elastic strain energy of CNTs is given by

UC ¼ 1
2
∭8 C εCx σ

C
x d8 ; ð9Þ

Fig. 1. Schematic representation of the elastically coupled system conveying fluid flow.

Fig. 2. Kinematics of Euler–Bernoulli beam theory.
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