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a b s t r a c t

We study the quantum phase transition in the one-dimensional Bose–Hubbard model with three-body
local interactions for densities ρ¼ 2, 3, 4 and 5 by implementing the Density Matrix Renormalization
Group method. This system shows two types of phases. One phase is incompressible (corresponding to
the Mott insulator state) and the other compressible (the superfluid state). The critical points found
correspond to a value of the hopping parameter for which the gap energy is equal to zero. We found that
the critical point increases slowly as the density of the system increases.

& 2014 Published by Elsevier B.V.

1. Introduction

When a system approaches absolute zero, all thermal fluctua-
tions are frozen out while quantum fluctuations remain. These
quantum fluctuations can induce a quantum phase transition in
the ground state of a many-body system [1]. The study of bosonic
systems has become a field of great interest in recent years due to
the growing possibility of performing experiments in optical
lattices [2,3]. The basic physics of strongly interacting bosons in
a lattice is contained in the Bose–Hubbard model; this is a model
of many bosonic particles which cannot be reduced to a model of a
single particle. The bosons interact due to the Coulomb repulsion
between them and the kinetic term, given as the energy for
jumping to neighboring sites in the lattice [4,5]. The critical points
of the quantum phase transition have been extensively studied
through computational and experimental methods.

Greiner et al. [1] studied the quantum phase transition in a
Bose–Einstein condensate with repulsive interactions at tempera-
tures in the nanoKelvin range. For this, they used ultracold atoms
in a three-dimensional lattice with periodic potential. They
observed that the system moves from a state where the atoms
are scattered throughout the lattice (the superfluid phase) to a
state where they are located at each site of lattice (the Mott-
insulator phase), while increasing the potential. They also
observed that this transition is reversible when the potential
decreases. Therefore, this transition is between an incompressible

state (gap energy different from zero) and a compressible state
(gap energy equal to zero) [5,6].

The critical points of the quantum phase transition for the
Bose–Hubbard model with two-body local interaction have been
studied via different computational methods. Kunher et al. [4]
implemented the density matrix renormalization group (DMRG)
method to find the ground state in a one-dimensional bosonic
chain for integer and half-integer densities, obtaining the respec-
tive phase diagram; for integer (half-integer) density, the quantum
phase transition is given between the Mott-insulator (charge
density wave) phase and the superfluid phase. Likewise, Lauchli
et al. [7] found the critical point of a one-dimensional bosonic
chain, for density ρ¼ 1, implementing the DMRG method and
taking measurements of the von Neumann block entropy. Cur-
rently, the most accurate calculation has been carried out by Ejima
et al. [8]. They used the DMRG method and extracted the
Tomonaga–Luttinger parameter from the density–density correla-
tion function, determining the critical interaction strength for the
Mott insulator; in their system, they maintain m¼2000 density-
matrix eigenstates, obtaining that the critical point for ρ¼ 1
(ρ¼ 2) is tc ¼ 0:30570:001 (tc ¼ 0:18070:001). Recently, Dan-
shita et al. [9] studied the critical points using the time-evolving
block decimation method for arbitrary integer densities for two-
body local interactions; they found that the critical point of the
quantum phase transition as a function of density is well approxi-
mated by the following expression:

U
Dρt

¼ aþbρ� c; ð1Þ

where D denotes the dimensionality of the system, ρ the density,
and the constants a, b, and c are numerically determined. The
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one-dimensional case is shown in Fig. 1. There it can be observed
that the critical point of the phase transition decreases as the
density increases. The approximation implemented by the authors
differs by 5% from the result obtained by Ejima et al. [8] for ρ¼ 1
and ρ¼ 2.

The study of the multi-body interaction shows interesting
physical properties. Büchler et al. [10] showed that polar mole-
cules in optical lattices driven by microwave fields naturally give
rise to Hubbard models with strong nearest-neighbor three-body
interactions, whereas the two-body terms can be tuned with
external fields. Kraemer et al. [11] reported the observation of an
Efimov resonance in an ultracold gas of Caesium atoms, and
experimentally observed its signature as a three-body recombina-
tion loss when the strength of the two-body interaction is varied.
Johnson et al. [12] have shown that there are effective three- and
higher-body interactions generated by the two-body collisions of
atoms confined in the lowest vibrational states of a three-
dimensional optical lattice. Will et al. [13] studied ultracold atoms
in a three-dimensional optical lattice. They demonstrated the
presence of effective multi-body interactions in a system of
ultracold bosonic atoms in a three-dimensional optical lattice,
emerging through virtual transitions of particles from the lowest
energy band to higher energy bands, and Chen et al. [14] studied
the Bose–Hubbard model with two- and three-body local interac-
tion by employing the mean-field approximation. They observed
the quantum phase transition between the Mott-insulator and
superfluid phases for integer fillings, and found that the three-
body local interaction enlarges the area of the insulating phase
when the density increases.

Inspired by the above, we study the quantum phase transition
in the one-dimensional Bose–Hubbard model with three-body
local interactions, for densities ρ¼2, 3, 4 and 5 by implementing
the density matrix renormalization group method.

In the next section, we show the Bose–Hubbard model with
pure three-body interaction. Subsequently, we show the gap
energy for four values of the hopping term, and finally we discuss
the behavior of the critical point of the quantum phase transition
as a function of density.

2. Critical points of the Bose–Hubbard model

The Bose–Hubbard Hamiltonian of bosons interacting via local
three-body terms is given by

H¼ �t∑
i
ðb†i biþ1þbib

†
iþ1Þþ

W
6
∑
i
niðni�1Þðni�2Þ; ð2Þ

where b†i and bi are the creation and annihilation operators,
respectively, at site i, ni ¼ b†i bi is the local number of particles,
and i varies along the sites of a one-dimensional lattice of size L.
The first term of Eq. (2) models the kinetic energy of the atoms,
and the parameter t indicates the tunneling force or hopping
between adjacent sites. The second term represents the short-
range interaction between three bosons, and the parameter W
characterizes its strength. The energy scale is set by choosing
W¼1.

The critical point of the quantum phase transition, when the
density remains constant, can be calculated as the value t for
which the energy gap is zero; the energy of excitation for adding
or removing a particle is given by

μpðLÞ ¼ E0ðL;Nþ1Þ�E0ðL;NÞ; ð3Þ

μhðLÞ ¼ E0ðL;NÞ�E0ðL;N�1Þ; ð4Þ
where μp (μh) is the energy necessary to add (remove) a particle
and E0ðL;NÞ is the energy of the ground state for a chain of size L
with N particles. This transition is of the Kosterlitz–Thouless type,
and the gap is given by

Eg ¼ μp�μh � exp
cteffiffiffiffiffiffiffiffiffiffiffi
tc�t

p
� �

; ð5Þ

but the energy gap closes very slowly, and small errors in the
energy lead to an error in the location of critical point tc [4];

Fig. 1. Behavior of the critical point for a Bose–Hubbard model with two-body local
interaction. The data were taken from [9].

Fig. 2. Dependence of system size on the chemical potential for ρ¼ 2. In the left (right) panel we have a Mott-insulator (superfluid) state. The solid lines are the quadratic fit.
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