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a b s t r a c t

We analyze electron–electron and Andreev reflections (AR) for a graphene–insulator–superconductor
junction for zigzag and armchair edges, where the insulator is modeled as a potential barrier
characterized by a strength. We calculate the reflection probabilities and differential conductance using
the Bogoliubov–de Gennes–Dirac (BdGD) equations. For low doping values and zigzag edge the reflection
coefficients have the same behavior that in a graphene–superconductor junction. However for high
doping values the reflection probabilities have a periodicity of πwith the strength barrier values. For high
doping values and armchair edge the electron–electron reflections associated to K0 valley increase and
AR associated to K valley decrease. We compare our results with the differential conductance obtained
by the Green formalism. We show that the effect of barrier strength for high doping resembles the
behavior when a hopping between graphene and superconductor interfaces is considered.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The graphene is a two-dimensional material recently discov-
ered [1]. The graphene is made out of carbon atoms arranged in a
hexagonal structure [2]. This material presents two types of edges,
zigzag or armchair. These edges have been observed by using the
scanning tunneling microscope (STM) technique [3]. One interest-
ing feature of graphene is its electronic behavior, since it depends
on the type of edge [2,4,5]. For instance, in the zigzag edges this
material has surface states that are not present in the armchair
edge [6]. Another feature of graphene is that it shows a conical
spectrum without gap. Also, due to its particularities, this material
has exhibited phenomena which have not been observed in the
conventional condensed matter systems. One particular example
is the Klein paradox, where the charge carriers can be transmitted
with probability 1 through a barrier. This phenomenon has been
studied across junctions based on graphene [7–9]. The signatures
of Klein paradox were observed experimentally at a graphene
heterojunction [10] via the conductance oscillations.

For this reason, such properties have been the subject of a
number of works [4,10–13]. In particular, studies on the electric
transport in GS junctions (G: graphene at state normal and S:

graphene at state superconductor) have found specular Andreev
reflections (Inter-band reflections) in contrast with Andreev retro-
reflection (Intra-band reflections) in conventional systems [14,15].
The Andreev reflections (AR) at an interface are fundamental
quantum transport phenomena. For instance, they have been used
to study the electric transport in other types of junctions such as
SGS [16], GIS (I: insulator) [17,18] and FIS (F: ferromagnet) [19].

The works on transport in GS and SGS junctions considered a
zigzag edge at the interface. In this paper we study the effect on
differential conductance at a GIS junction with an insulating
barrier. The insulating barrier is modeled by a Dirac delta function
or as a finite potential barrier. We analyze different edges, arm-
chair and zigzag, and show how the differential conductance
depends on the edge and insulating barrier parameters. We
compare the results obtained by means of Bogoliubov–de Gen-
nes–Dirac (BdGD) equations and by Green's functions formalism.

2. Solutions for graphene

The Brillouin zone of graphene is a hexagonal structure, where
in its spectrum can be distinguished two inequivalent corners K
and K0 [4]. The charge carriers in the vicinity of this corners obey
the Dirac equation Hηψη ¼ Eψη; where Hη ¼ σ!η � p!η, with
σ!η ¼ ðησx;σyÞ where η¼ 7 denote the KðK0Þ valley, σxðyÞ are the
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Pauli matrices and p!η the momentum. In fact, the wave function
ψη† ¼ ðψη

A;ψ
η
BÞ† is a two-component spinor in the A–B space.

The graphene is not a natural superconductor. However, cur-
rent measurements of the Josephson effect showed graphene at
state superconductor via a proximity effect [20]. This state consists
of Cooper pairs, therefore the dynamics of quasiparticles in this
system can be described via the Bogoliubov–de Gennes–Dirac
(BdGD) [14] equations with excitation energy E as

Hη�EFS Δ
Δn EFS� ~Hη

 !
u
v

� �
¼ E

u
v

� �
; ð1Þ

where u and v are the electron-like and hole-like quasiparticle
amplitudes in the Nambu space, respectively. EFS is the Fermi
energy and ~Hη ¼ ~THη ~T

�1
with ~T being the time-reversal operator

[14,15]. The pair potential Δ couples electron and hole states in
the same valley.1

We obtain graphene at normal state when the pair potential
vanishes Δ¼ 0. The solutions ψ in the x direction of the quasi-
particles are

u¼ψ e
4ðoÞp

1
ð�Þeð� Þiαe

 !
e7 ikex;

v¼ψh
oð4Þp

1
ð�Þeð� Þiαh

 !
e7 ikhx; ð2Þ

where the subscript eðhÞ denotes electron (hole), 4 ðo Þ denote
quasiparticles with positive (negative) group velocity. eiαeðhÞ �
ℏνF ðkeðhÞ þ iqÞ=E7EF , with keðhÞ ¼ ðððE7EF Þ=ℏvF Þ2�q2Þ1=2, i.e., the
energy has been measured with respect to Fermi level EF in the
graphene. We assume that ψ ðx; yÞ ¼ eiqyψ ðxÞ.

The relation between armchair and zigzag edges is a rotation of
901 [21]. Therefore, the solution at K0 valley is obtained with the
relation k and q as

Armchair ) fk-�k‘eiα2�e� iα;

Zigzag ) fq-�q‘eiα2e� iα; ð3Þ

where k and q are the wave numbers in the x and y directions
respectively.

The solution in homogeneous superconductor with Δ¼Δ0 can
be written as

u
v

� �
qe4 ðo Þ

p
u0

v0

 !
� ψ qe

4ðoÞ;

u
v

� �
qho ð4 Þ

p
v0
u0

 !
� ψ qh

oð4Þ; ð4Þ

where u0, v0 are the BCS factors. The subscript qe and qh denote
the electron-like (hole-like) quasiparticle with jkj4ðoÞkF . The

functions ψ qe;qh
4ðoÞ are given at (2), with the substitution

e7 iαeðhÞ-e7 iαqeðqhÞ � ℏνF ðkqeðqhÞ7 iqÞ=ðEFS7ΩÞ, with kqeðqhÞ ¼
ðððEFS7ΩÞ=ℏvF Þ2�q2Þ1=2 and Ω� ðE2�jΔ0j2Þ1=2. Therefore the
wave function of the quasiparticles at K valley is given as the
superposition of spinors as

ΦSðxÞ ¼
u0

v0

 !
� ψ qe

4þ
u0

v0

 !
� ψ qe

o

(

þ
v0
u0

 !
� ψ qh

4 þ
v0
u0

 !
� ψ qh

o

)
: ð5Þ

3. Conductance at interface GIS

We considered a system, contained in the x–y plane, which
consists of graphene at normal state at xo0, an insulator (region I)
at 0rxrd and graphene in the superconducting state at x4d.
The insulator is modeled as a potential barrier of width d-ξ0 and
height V0, the barrier is characterized by a dimensionless strength
χ � V0d=ℏvF . Let us consider an electron incoming at the K valley
from the graphene at normal state. It can be scattered as electron
or hole in the same valley or as electron or hole in the inequivalent
valley. The general solution is

ΦGðxÞ ¼ eiKx
1
0

� �
� ψ e;þ

4 þUþ
1
0

� �
� ψ e;þ

o

�

þV þ
0
1

� �
� ψh;þ

4

�
þe� iK0x U�

1
0

� �
� ψ e;�

o

�

þV �
0
1

� �
� ψh;�

o

�
; ð6Þ

with U7 and V7 being the probability amplitudes of electron or
hole reflection, respectively in the KðK0Þ valley.

From the probability amplitudes the normal reflection coeffi-
cient Re�e and the Andreev reflection coefficient Re�h in each
valley are

R7
e�e ¼ jU7 j2; ð7Þ

R7
e�h ¼ jV7 j2 cos ðαhÞ

cos ðαeÞ

�����;
����� ð8Þ

Fig. 1 shows the reflection coefficients for a low and high
doping value for the graphene. In this case we consider zigzag edge
where the valleys are uncoupled U� ¼ V � ¼ 0, the insulating
barrier V0 is high (in comparison with doping) and d5 ; ξ0, with
ξ0 being the BCS coherence length.

The electron–hole reflection coefficient is null when the excita-
tion energy is equal to doping. This behavior is presented only
when doping of graphene at normal state is jEF jrΔ0. For a low
doping value the intra-band reflections appear for EoEF and the
intra-band reflections appear for E4EF . Since ℏvFq5V0; EFS, the
angle of incidence on the superconductor is near to zero and in this
case the Klein tunneling probability on the insulating barrier is near
to one. For the case of high doping graphene the incidence angle
increases and the probability of transmission through the insulating
barrier decreases and therefore, the AR decreases also. The reflec-
tion coefficients are oscillatory with the change of strength χ, since
its values are repeated for strength barrier χ ¼ 0;π.

For the armchair edge the incident electron can be reflected in
the other valley, so U� ;V � a0. The reflection coefficients are
shown in Fig. 2. In this case we consider Dirac insulating barrier
(d-0 and V0-1).

The reflection coefficients in K0 valley are null when the
insulator is transparent. For any doping, the electron–electron
reflection coefficient in K decreases when the insulator strength
increases. Therefore, the effect of the insulator is to increase the
electron–electron reflection in K0. In the inset of Fig. 2 we show the
transition from intra-band reflections to inter-band reflections.
The AR reflection coefficient decreases with the barrier strength,
since the electron–electron reflections increases.

The differential conductance for a GIS junction in terms of
reflection coefficients [22] is

GðeVÞ
G0

¼
Z

dq 1�ðjUþ j2þjU� j2ÞþðjV þ j2þjV � j2Þ �
cos ðαhÞ
cos ðαeÞ

)
;

�����
�����

(

ð9Þ

1 In the wave vector space the electron and hole components of the quasi-
particle are in the same valley KðK0Þ, but in the momentum space the electron is in
the valley with momentum ℏK and the hole is in ℏK0 ¼ �ℏK.
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