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a b s t r a c t

We study the localization properties of diluted direct transmission lines, when we distribute two values
of inductances LA and LB, according to the aperiodic Galois sequence. When we dilute the aperiodic
Galois system with ðd�1Þ inductances with constant L0 value, we find d sub-bands and ðd�1Þ gaps; here
d is the period of the distribution of the Galois sequence in the diluted system. Under the condition
L0 � ðLA; LBÞ, we find a set of extended states for finite Nd system size, which disappears when Nd-1. For
the case L0b ðLA; LBÞ, using the scaling behavior of the averaged participation number 〈DðωÞ〉 and the
scaling behavior of the averaged normalized participation number 〈ξðωÞ〉, we demonstrate the existence
of extended states in the thermodynamic limit.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The localization properties of aperiodic, quasi-periodic and
disordered classical and quantum systems have been studied
experimentally and theoretically [1–18]. The short-range and
long-range correlations are very important properties which
determine the possible existence of resonances (a finite number
of extended states) or the possible existence of extended states’
bands, respectively. For one-dimensional systems without correla-
tion in the disorder (white noise), all states are localized states in
the thermodynamic limit (N-1). The study of aperiodic and
quasi-periodic systems reveals rich electronic properties [19–29].
In addition, in the last time, the localization properties of direct and
dual electric transmission lines (TL) have been studied [30–36]. These
classical systems have been studied considering aperiodic, quasi-
periodic and long-range correlated distribution of Lj inductances and
Cj capacitances.

Also, diluted disordered classical systems (harmonic oscillators
and transmission lines) and diluted disordered tight-binding quan-
tum systems have been studied in the last time [12–14,30,31,37–45].

Recently, the localization properties of electronic states of one-
dimensional finite aperiodic Galois sequences have been studied
[46]. Using a finite sequence with N¼ 1023 sites (m¼10), the
authors demonstrate that all states are localized states. In the

present work we study the localization properties of non-diluted
and diluted classical electrical direct transmission lines, when we
distribute two different values of inductances LA and LB according
to the Galois sequence [46–53]. We study the finite Galois
sequences generated for specific p and m. The N number of
elements of each aperiodic Galois sequence is given by the relation
N¼ ðpm�1Þ. In this paper we use p¼2, with m varying fromm¼13
to m¼23, namely, the N size of each Galois sequence varies from
N¼8191 to N¼8,388,607.

For the diluted case, we introduce a set of ðd�1Þ diluting
inductances of fixed L0 value between two consecutive sites with
Galois elements. When the Galois aperiodic sequence with N¼
ð2m�1Þ elements is diluted using ðd�1Þ constant L0 values between
two consecutive Galois elements, the Nd total number of cells of the
diluted transmission line is given by Nd ¼ ðdð2m�2Þþ1Þ. For the case
d¼5, Nd ranges from Nd ¼ 40;951 (m¼13) to Nd ¼ 41;943;031
(m¼23).

In this paper, we calculate the global density of states DOSðωÞ and
the integrated density of states IDOSðωÞ using the Dean method.
Besides, we use the Hamiltonian map approach [18,54–61] to
calculate the electric current function IðωÞ, the normalized locali-
zation length ΛðωÞ, the transmission coefficient TðωÞ, the partici-
pation number DðωÞ and the normalized participation number
ξðωÞ ¼ ð1=NÞDðωÞ, where N is the system size under study. We
analyze the localization properties in the thermodynamics limit
studying the scaling behavior of the participation number DðωÞ
and the scaling behavior of the normalized participation number
ξðωÞ.
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The primary results of our study of the localization properties
of the diluted TL with distribution of inductances following the
Galois sequence with period d and ðd�1Þ diluting L0 values, are the
following:

(a) For L0 � ðLA; LBÞ, for finite Nd diluted system size, each sub-
band contains a set of extended states (Λðω;NdÞZ1 and
Tðω;NdÞ…1), which begin to localize for increasing Nd values. As
a consequence, for this case, all states are localized states in the
thermodynamic limit (Nd-1).

(b) For finite Nd and L0b ðLA; LBÞ, each sub-band contains a set
of extended states (Λðω;NdÞZ1 and Tðω;NdÞ…1). Using the
scaling properties of averaged quantities 〈Dðω;NdÞ〉 and
〈ξðω;NdÞ〉, we demonstrate the existence of extended states in
the thermodynamic limit (m-1, Nd-1). This is one of the most
important results of our work.

This paper is organized as follows: Section 2 describes the
model and the method. Section 3 shows the most important
numerical results and Section 4 provides the conclusions of
our work.

2. Model and method

2.1. Direct electrical transmission lines

The dynamic equation for the direct diagonal transmission
lines formed by horizontal inductances Ln and constant vertical
capacitances Cn ¼ C0; 8n is given by Refs. [30,31]

ð2�ω2C0LnÞIn� In�1� Inþ1 ¼ 0 ð1Þ
whereω is the frequency. In this paper, we distribute two different
values of inductances, LA and LB, using the Galois aperiodic
sequence [46–48,50–53]. It is interesting to note that the dynamic
equation (1) can be mapped into a tight-binding quantum model
[30]. In this paper we will use the Hamiltonian map approach to
solve the infinite set of equations given by Eq. (1).

2.2. Generation of Galois sequences

The finite fields or Galois fields GFðpmÞ are very important in
informatics and communication, because they are basic for the
study of decoding theory and cryptography. Additionally, they are
essential in the study of discrete mathematics [47–53]. The Galois
fields are correctly defined when p is a prime number and m is a
positive integer. In this paper, the Galois sequences fakg with
period ðpm�1Þ are generated from the primitive polynomial PmðxÞ
(see Table 1) using the recursion method [47,48,51,52]. We will
work with a TL with an aperiodic distribution of inductances with
an N number of elements coincident with the period, namely,
N¼ ðpm�1Þ. We will study the case with p¼2, which means that
the elements of the Galois field can have only two different values,

0 and 1. In Table 1 we show the primitive polynomial PmðxÞ and the
corresponding fakþmg recurrence relation, necessary to generate
the Galois sequence, for m¼15 to m¼22.

We use the same arbitrary initial conditions of Ref. [46],
namely, að2n�1Þ ¼ 1 and að2nÞ ¼ 0, for 1rnr ½m=2�, where ½x�means
the integer part of the real number x. These initial conditions are
already considered in Table 1, for the first m values of each
sequence (a1–am). As a consequence, we will work with aperiodic
Galois sequences defined between 1 and ðpm�1Þ, which means
that the recurrence relation, fakþmg given in Table 1, will be
defined for k A ½1; ðpm�1�mÞ�: To work with two different values
of the inductances, i.e., LA and LB, distributed according to the
aperiodic Galois sequence, we make the following correspon-
dence: 1-LA and 0-LB: We show an example for the aperiodic
case with m¼4 (N¼15):
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2.3. Hamiltonian map approach

Using the substitution αn ¼ ðω2C0LnÞ, the dynamic equation (1)
can be written as

ð2�αnÞIn ¼ In�1þ Inþ1 ð2Þ
We will study the localization properties of the disordered TL

using the Hamiltonian map approach [18,54–61]. To generate a
classical two-dimensional Hamiltonian map corresponding to the
direct electric transmission line, let us consider the following
definition of two new variables xn and pn as a function of the
electric current functions In and Inþ1:

xn ¼ In ð3Þ

pnþ1 ¼ Inþ1� In ð4Þ
After some algebra, we find the Hamiltonian map for our problem,
namely,

xnþ1 ¼ βnxnþpn
pnþ1 ¼ �αnxnþpn ð5Þ
where βn ¼ ð1�αnÞ. The trajectories of this map in the plane ðp; xÞ
can be used to recognize the localized or extended character of the
electric current function In ¼ xn: In particular, if all inductances are
constant, i.e., Ln ¼ L0, 8n, the transmission line is periodic, and all
trajectories of the map in the phase space ðp; xÞ are circles specified
for the initial conditions ðp0; x0Þ. As a consequence, the extended
states are represented by bounded trajectories; on the contrary,
the localized states are represented by unbounded trajectories. In
addition, the study of the time evolution of the Hamiltonian map
(5) is similar to the transfer matrix method used in the study of
disordered systems [18,62].

Let us now consider the transformation of the map (5) to the
canonical variables ðr;θÞ in the usual way, i.e.,

x¼ r sin θ ð6Þ

p¼ r cos θ ð7Þ
The Hamiltonian map (5) can be written in the following form:

rnþ1 sin θnþ1 ¼ βnrn sin θnþrn cos θn ð8Þ

rnþ1 cos θnþ1 ¼ �αnrn sin θnþrn cos θn ð9Þ
using these equations, we can calculate the term Γn ¼ ððrnþ1Þ=rnÞ,
namely,

Γ2
n ¼ 2�ð1þ2αnβnÞ sin 2 θnþð1�2αnÞ sin 2θn ð10Þ

Furthermore, dividing Eq. (8) by Eq. (9), we obtain the recurrence
equation for the phase map θn, namely, the relation between θnþ1

Table 1
Primitive polynomials PmðxÞ and the corresponding recurrence relations akþm , for
kA ½1; ðpm�1�mÞ� to obtain the Galois sequence. The initial conditions for the first
m values are considered.

m PmðxÞ akþm , kZ1

15 x15þxþ1 akþ1þak
16 x16þx5þx3þx2þ1 akþ5þakþ3þakþ2þak
17 x17þx3þ1 akþ3þak
18 x18þx7þ1 akþ7þak
19 x19þx6þx5þxþ1 akþ6þakþ5þakþ1þak
20 x20þx3þ1 akþ3þak
21 x21þx2þ1 akþ2þak
22 x22þxþ1 akþ1þak
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