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a b s t r a c t

In the present paper a theoretical model, describing the effects of external electric and magnetic fields
on an electron confined in an anisotropic parabolic potential, is considered. The exact wave functions are
used to calculate electron current and orbital magnetic dipole momentum for the single electron.
Exact expressions, giving the force and energy of the dipole–dipole interaction, are also determined. Further,
the system is coupled to a heat bath, and mean values and fluctuations of the magnetic dipole momentum,
utilizing the canonical ensemble are calculated. Influences of the temperature, as well as the external
magnetic field, expressed via the Larmor frequency are analyzed. We also include the dependencies of the
magnetic dipole momentum and its fluctuations on the effective mass of the electron, considering some
experimental values for low-dimensional systems, that are extensively studied for various applications in
electronics. Our results suggest that the average momentum or its fluctuations are strongly related to the
effective mass of the electron. Having on mind that parabolically shaped potentials have very wide area of
application in the low-dimensional systems, such as quantum dots and rings, carbon nanotubes, we believe
that the proposed model and the consequent analysis is of general importance, since it offers exact analytical
approach.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Modeling of real physical and chemical systems using various
types of parabolic potentials is widely exploited in treating a broad
class of phenomena in condensed matter physics, such as optical
transitions in solids, molecular vibrations, phononic vibrations up
to vibronic transitions, and excitonic transitions. On the other
hand, the advancement of spectroscopic techniques for studying
molecular vibronic transitions and excitonic transitions in solid
state produces a large amount of experimental data (energy
spectrum, Fermi surfaces, effective mass of confined electrons),
providing a ground to develop reliable theoretical models and
determine the limits of applicability of the known models. So far, it
has been shown in a number of excellent papers that electronic
structure, optical transition, absorption coefficients of newly
fabricated low-dimensional quantum systems, such as quantum
dots, quantum wires, quantum rings, where one deals with
N-electrons, confined in one or three dimensions under various
potential shapes are successfully modeled by parabolic potentials

[1-14], to name but a few. These systems resemble many interest-
ing electronic, optical and magnetic properties, thus development
of theoretical models to rationalize and understand experimentally
detected features is of crucial importance. In Ref. [14] electronic
properties of anisotropic quantum dots are studied analytically,
including the effects of the magnetic field magnitude and aniso-
tropy on the energy levels. The theory and the modeling
of anisotropic quantum systems have attracted much attention
recently, because a series of interesting properties of anisotropic
quantum dots have been found. For example, resonance Raman
scattering in the anisotropic quantum dots subjected to magnetic
field suggests that such a quantum dot could be used as a phonon
modes detector [13,15]. In Ref. [11] N-electron quantum dots with
several shapes of confining potentials at high magnetic fields are
investigated in the frameworks of configurations interaction
scheme with a multi-centered single-electron wave functions in
Cartesian coordinates. In the paper, among the other shapes, the
authors also consider anisotropic two-dimensional parabolic poten-
tial with Landau gauge and in order to verify the validity of the
proposed method, comparison with isotropic three-dimensional
parabolic potential is provided.

Undoubtedly, the model of linear harmonic oscillator (parabolic
confining potential) with its simplicity is still an important
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reference for theoretical description of emerging quantum sys-
tems. Stating the Schrödinger equation for a class of systems,
manifesting some common properties, such as harmonicity and
anisotropy, and even more finding analytical solutions enable a
general and systematic approach in treating, predicting and
analyzing a broader class of problems. It is worth to emphasize
here that the aforementioned properties could not be extrapolated
from the bulk properties, thus finding exact forms of single-
electron wave functions is of great importance, since it provides
a basis set for expanding N-electron wave functions describing the
aforementioned few-electron nanostructures.

In our previous work we have stated an analytically solvable
model for an axially symmetrical anisotropic quantum oscillator in
the presence of electric and magnetic fields, obtaining the non-
degenerate energy spectrum and normalized wave functions, as
well as selection rules in dipole approximation for the considered
system [16]. A perturbation theory approach, utilizing the derived
basis set, was also applied to inspect the effects of symmetry
removal in the presence of external fields. In the present work we
extend this model, by investigating also magnetic properties of a
system that could be described as anisotropic cylindrical oscillator.
Assuming the applicability of this theoretical model in investiga-
tion of the low-dimensional structures, such as quantum wires,
dots and rings, we here adopt effective mass approximation and
consider the motion of electron in anisotropic parabolic potential.
We use the previously derived analytical solutions by our group
[16] to carry out calculations of the electron current density in
electric and magnetic fields that are further utilized to obtain
orbital magnetic dipole momentum. It is worth to be mentioned
here that the orbital magnetic momentum is predominant over a
spin one in some of the emerging novel materials, such as carbon
nanotubes for example [17]. Obtaining normalized basis set and
calculating the current density are also very important to analyze
the edge states in quantum dots [12]. We further consider
statistical mean values of the magnetic dipole momentum and
its fluctuations within a canonical ensemble approach. An exten-
sive analysis of the dependence of the magnetic fluctuations on
the temperature and the external magnetic field is provided. We
have also obtained exact expression for the magnetic dipole–
dipole interaction of the confined electrons that could be further
used to perturbatively analyze the effects of long-range interac-
tions of electrons. As we mentioned above, the potential area of
application of such a model is wide, considering that the effective
model Hamiltonians of electrons in low-dimensional structures
often contain a parabolic potential.

2. Methodology and calculations

Let us first give the statement of the model. We consider an
anisotropic parabolic potential energy function of the form [18,20,21]

UðHÞ ¼mn

2
ðω2

0ρ
2þω2

z z
2Þ; ð1Þ

where for the mass of the oscillator we use the effective mass mn of
the electron, and ω0 and ωz are the classical angular frequencies in
the aforementioned potential. The effective mass approximationwith
such potentials has been used in many papers treating various
shapes of semiconducting low-dimensional structures. For example,
parabolically shaped confining potential is used in Ref. [1] to
investigate the linear and the nonlinear optical absorption of
quantum dots and rings made of GaAs. Intersubband transitions in
semiconducting materials and the optical properties with paraboli-
cally shaped potential plus some additional terms are also studied in
Ref. [2,3]. Similar but isotropic case is considered in Ref. [4]. Third
harmonic generation in GaAs/AlAs cylindrical quantum dots within

the frameworks of such models is investigated in Ref. [6–8]. In
Ref. [9,10] the electronic states of narrow band gap semiconductor
microcrystal, as well as interband transitions and absorption coeffi-
cients in cylindrical quantum dots made of GaAs, are studied. It is
worth to mention that the effective mass of electrons and holes in
solids is usually ð0:01–10Þm0, where m0 stands for the free electron
mass, e.g. in GaAs it is 0:067m0 [22].

Further, the considered oscillator exhibits influence from external
electric and magnetic fields and their explicit forms are provided
below:

E¼ Ezez; B¼ B0ez: ð2Þ

The Hamiltonian of this system, taking into account the influences of
external fields, is given by

Ĥ0 ¼
1

2mn
ð� iℏ∇�qAÞ2þUðHÞ �q � z � Ez; ð3Þ

where q represents the charge of the electron. It is worth to mention
here that the first statements of such Hamiltonians and valuable
results, widely applicable also to emerging low-dimensional quan-
tum systems, date back to seminal works of Fock and Darwin
[18,19]. The corresponding Schrödinger equation has the following
form:

Ĥ0Ψ ðρ;ϕ; zÞ ¼ Eð0ÞΨ ðρ;ϕ; zÞ: ð4Þ

The potential function (1) is invariant by rotation around z-axis.
Likewise, both external fields are of formwhich does not destroy the
initial cylindrical symmetry of the oscillator. This fact naturally
imposes to solve Schrödinger equation in cylindrical coordinates.
A suitable choice for the vector potential A which enables analytical
solution of the Schrödinger equation is the following: A¼ ðB0=2Þρeϕ,
here eϕ is an ort vector in azimuthal direction. This vector potential
meets both required conditions div A¼ 0; rot A¼ B. As it is shown
in Ref. [16] the exact wave function is given by the following
expression:

ψ ðρ;φ; zÞ ¼ Cnρ ;jmlj;nz � eımlφ � ρjmlj � exp �1
2
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with normalization constant:

Cnρ ;jml j;nz ¼
αz

π322nz

� �1=4

� 1
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Regarding notation, we have introduced the following labels:
λ¼ ð2mnEð0Þ=ℏ2; α0 ¼ ðmnω0Þ=ℏ; αz ¼ ðmnωzÞ=ℏ; β¼ ð2mnqEzÞ=ℏ2;
ρ4
0 ¼ ½α2

0þðq2B2
0Þ=ð4ℏ2Þ��1, where ml is the magnetic quantum

number with allowed values 0; 71; 72‥. Both quantum numbers
nz and nρ are allowed to values 0;1;2;‥. Eigenenergies, calculated
analytically as well, are of the following form [16]:

Eð0Þnρ ;nz ;ml
¼ ℏ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

0þω2
q

ð2nρþjmljþ1Þ�mlωþωzð1=2þnzÞ�

�ðq2E2z Þ=ð2mnω2
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where we have introduced the Larmor frequency ω¼ qB0=2mn .

2.1. Current density in electric and magnetic fields. Magnetic dipole
momentum calculation

Knowing the exact quantum states in this potential as well as
eigenenergies we are able to proceed finding analytical expres-
sions of quantities related to the magnetic dipole momentum.
A particle with charge q and effective mass mn creates current
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