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a b s t r a c t

The Landau theory was applied to treat the phase diagrams for a multiferroic with two second order
phase transitions taking into account the coupling of the primary order parameters with strain. Two
order parameters are coupled biquadratically which corresponds to the magnetoelectric materials. The
coupling with strain is assumed to be linear in strain and quadratic in order parameters. Three ordered
phases are discussed. Analytic relationships were obtained for the phase transition temperatures and for
elastic modulus changes through the phase transitions. Strong influence of the coupling with strain on
the phase diagrams was shown.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, renewed attention was focused on multiferroic materi-
als (single-phase and composite ones) because of their promising
applications as multifunctional devices ([1,2] and references therein).
The most interesting case is when two coupling order parameters are
related to magnetic and electric orderings leading to the magneto-
electric effect. Experimental studies of multiferroic materials showed
that their properties can be remarkably influenced by interaction
with strains. Such an interaction becomes apparent, for instance, in
elastic anomalies through the phase transitions [3–10] and in the
impact of substrate-induced or epitaxial strain on the ferroic phase
transitions and orientations of magnetic moments [11–13]. While
much effort were made to reveal the role of strain in the multiferroic
materials, some effects of coupling of the magnetic and electric order
parameters with strain were still not discussed properly.

In the present paper we will theoretically describe how the
coupling with strain affects the phase diagrams and the magnitudes
of the order parameters of a multiferroic using the phenomenolo-
gical Landau approach. The model can be applied to materials in
which the multiferroic phase emerges as a result of two phase
transitions occurring at different temperatures. This class of materi-
als includes multiferroics with independent magnetic and ferro-
electric subsystems such as borates, boracites, and some doped

perovskites and also materials inwhich the same structural units are
involved in magnetic and ferroelectric orderings such as hexagonal
manganites or Bi and Pb perovskites [1,14]. Generally, the ferro-
electric phase transition occurs in these multiferroics at tempera-
tures higher than the magnetic one. The case of multiferroics in
which ferroelectricity is generated by magnetic ordering is beyond
our consideration.

The Landau theory was repeatedly applied to study the proper-
ties of multiferroic materials (see, for instance, Refs. [15,16]); how-
ever the treatment of the problem mentioned above was lacking.
The precise expressions for the relevant elastic anomalies through
the phase transitions will be also written for completeness, all the
more because they were not derived for some particular cases
until now.

2. Phase diagrams

Let us consider a multiferroic which has two successive phase
transitions associated with two primary order parameters η and ξ.
As we restrict our discussion to the most interesting case of magnetic
and electric order parameters, the coupling between the order
parameters takes the biquadratic form ð1=2Þðκη2ξ2Þ (κ is a phenom-
enological coupling constant). The magnetic order parameter for
ferromagnetic materials can be equated to the magnetization while
for the antiferromagnetics it can be identified with the difference in
magnetizations of the magnetic sublattices. Additionally, we assume
that both order parameters are coupled to strain ε which plays the
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role of a secondary order parameter. While the phase diagram for the
two coupled order parameters was considered repeatedly (see, for
instance, Refs. [17,18]), its alterations caused by interaction with
strain were never discussed. We will take into account the most
important magnetoelastic coupling which is linear in strain (magne-
tostriction). Similarly, the electroelastic coupling is implied to be
linear in strain and quadratic in spontaneous polarization (electro-
striction). The latter means that the paraphase is centrosymmetric in
agreement with the structure of knownmultiferroics [1,14]. Then the
Landau free energy expansion for the second order phase transitions
can be written as

Φ¼ 1
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where α¼ α0ðT�T1Þ, and a¼ a0ðT�T2Þ; α0, a0, β, b, c, θ1, and θ2 are
phenomenological constants; α0, a0, β, and b are positive. We assume
T24T1.

The necessary conditions forΦ to have a local minimum at zero
applied fields imply that the derivatives
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are all equal zero (the equilibrium conditions). If we define for
convenience

~β ¼ β�θ2
1

2c
; ~b ¼ b�θ2

2

2c
; κ ¼ κ�θ1θ2

2c
; ð3Þ

the equilibrium conditions can be written using Eqs. (2) and (3) as

ηðαþ ~βη2þ ~κξ2Þ ¼ 0

ξðaþ ~bξ2þ ~κη2Þ ¼ 0

ε¼ � 1
2сðθ1η2þθ2ξ

2Þ

8>>><
>>>:

: ð4Þ

System (4) leads to the emergence of four different phases
depending on phenomenological parameters and temperature: the
paraphase η¼ 0, ξ¼ 0; two different ordered phases η¼ 0, ξa0
and ηa0, ξ¼ 0; and the multiferroic phase ηa0, ξa0. The
conditions of stability of these four phases can be found using
the Hesse matrix
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A phase is stable when the Hesse matrix is positive definite.
Then the free energy has a local minimum. To check whether the
Hesse matrix is positive definite or not, one can use Sylvester's
criterion. According to this criterion, the eigenvalues of a sym-
metric matrix are all positive if and only if all leading principle
minors are positive. Let us consider the ranges of existence of
different phases individually.

(a) Paraphase η¼ ξ¼ ε¼ 0
� �

(phase 1).
The Hesse matrix is diagonal with eigenvalues α, a, and c. It is
positive definite if T4T2.

(b) Phase η¼ 0; ξa0 (phase 2).
From system (4) the equilibrium values of the nonzero order
parameters are given by ξ2 ¼ �a= ~b and ε¼ aθ2=2 ~bс. This

phase can exist below T2. The Hesse matrix

A¼
α� ~κa

~b
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is positive when

c40
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The second inequality in system (7)

det
2bξ2 θ2ξ
θ2ξ c

 !
¼ 2c ~bξ2 ¼ �2ac40 ð8Þ

is satisfied at ToT2. The third inequality in system (7)
becomes

α� ~κa
~b
40 ð9Þ

which is satisfied at 0oToT2 if ~κ4α0
~bT1=a0T2 � ~κ1 and at

0o ~T highoToT2 if ~κo ~κ1
, where

~T high ¼ T2�
T2�T1

1�ða0 ~κ=α0
~bÞ
: ð10Þ

This means that the multiferroic phase may emerge only if ~κo ~κ1.
(c) Phase ηa0; ξ¼ 0 (phase 3).

From Eq. (4) we can find η2 ¼ �α= ~β and ε¼ αθ1=2 ~βс. The
former imposes T1 as the upper temperature limit for phase 3.
The Hesse matrix for phase 3 is

A¼
2βη2 0 θ1η
0 a� ~κα

~β
0

θ1η 0 c

0
BB@

1
CCA: ð11Þ

One can show that the Hesse matrix (11) is positive definite
within a temperature interval 0oTo ~T lowoT1 only if
~κ4 ða0 ~β=α0ÞðT2=T1 � ~κ2Þ, where

~T low ¼ T1�
T2�T1

~κα0=a0 ~β�1
: ð12Þ

Phase 3 does not exist if ~κo ~κ2. The temperature intervals
where phases 2 and 3 exist, must not overlap for the second
order phase transitions. This requires the additional condition
~T lowr ~T high which is satisfied if

~κ2r ~b ~β : ð13Þ
Inequality (13) imposes a restriction on the magnitude of the
modified coupling constant ~κ and can be denoted as the
condition of the weak coupling.

(d) Multiferroic phase ηa0; ξa0 (phase 4).
For this phase the Hesse matrix is

A¼
2βη2 2κξη θ1η

2κξη 2bξ2 θ2ξ
θ1η θ2ξ c

0
BB@

1
CCA: ð14Þ

Sylvester's criterion gives the following inequalities:
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The first inequality in (15) is obviously satisfied. The second
one leads to κ2oβ b which is the weak coupling condition
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