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a b s t r a c t

The ground-state properties and quantum phase transitions (QPTs) in spin-1/2 Heisenberg-Ising
alternating chain has been investigated by the iTEBD algorithm. Four different ground-state phases,
i.e., a ferromagnetic phase (FM), an antiferromagnetic phase (AF), a stripe phase (SP), and a disordered
phase were distinguished. The disordered phase, which has nonzero string orders and the doubly
degenerate entanglement spectrum, was observed as Heisenberg coupling JH40:5. The disordered
phase in such a model is found to belong to the same topological phase as the Haldane state. In the
disordered phase, every two nearest-neighbor spin-1/2 spins connected by the Ising coupling behave
like an integer (S¼1) spin. Furthermore, the QPTs from the disordered phase to the AF and SP phases
belong to the Ising universality class with central charges c¼ c ¼ 1=2.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Some magnetic materials which exhibit quasi-one-dimensional
characters can be well described by spin chains. However, it is
interesting that there exists a fundamental difference between
half-integer-spin chains and integer-spin chains. In detail, the half-
integer antiferromagnetic Heisenberg chain has gapless excita-
tions. In contrast, there exists a distinct energy gap between the
first excited state and the ground state (Haldane phase) for
integer-spin chain [1]. Since Haldane's prediction, the integer spin
chains have been attracting much attention. The concept of the
string order introduced firstly by den Nijs and Rommelse [2] and
later by Tasaki [3] is found to be capable of clarifying the physical
nature of the Haldane phase which possesses a hidden long-range
“string” order accompanied by the breaking of a hidden “Z2� Z2”
symmetry [4,5].

In order to elucidate the properties of the spin-1 Heisenberg
chain, the spin-1/2 ferromagnetic–antiferromagnetic alternating
chain was proposed and investigated explicitly by Hida [6,7]. The
ferromagnetic coupling should be infinitely strong to force the
spins interacting ferromagnetically to form a local triplet, this way
resulting in a spin-1 chain. It is interesting that the string order is
found to be finite not only in the Haldane-gap phase but also in
the dimer phase. Therefore this order parameter must be useful to
distinguish the static valence-bond-type disordered states from

other disordered states. The string order parameter which was
originally defined for the spin-1 Heisenberg chains [2] has been
generalized to the spin-1/2 ferromagnetic–antiferromagnetic
alternating chain. This ground state belongs to the same topo-
logical phase as the Haldane state, and interpolates those of the
uniform spin-1/2 and spin-1 Heisenberg chains. Recently, the
ground-state phases of a spin-1/2 ferromagnetic–antiferromagnetic
alternating Heisenberg chain with ferromagnetic next-nearest-
neighbor (NNN) interaction were investigated [8]. In addition
to the Haldane phase and the ferromagnetic phase, a series of
topologically distinct spin-gap phases with various magnitudes
of edge spins were reported.

Theoretically, it is also interesting for us to reduce the Heisen-
berg couplings on even bonds to a classical (Ising) type. It means
that the couplings on the odd bonds are Heisenberg type, but that
on the even bonds are Ising type. Such a model is called the one-
dimensional (1D) spin-1/2 Heisenberg–Ising alternating model.
This model, which has been originally proposed by Lieb et al. [9]
and re-examined subsequently by Yao et al. [10], represents a
valuable example of rigorously solved quantum spin chain. The
spin-1/2 Heisenberg–Ising alternating model is described by

Ĥ ¼ ∑
N=2

i
½JHŜ2i�1 � Ŝ2iþ JIS

z
2iS

z
2iþ1�; ð1Þ

where Ŝ is the spin-1/2 operator, and N is the length of the spin
chain. JH and JI denote the Heisenberg and Ising couplings on the
odd and even bonds, respectively. Based on fundamental quantum
mechanical principles, the ground state as well as excited state of
this model was obtained. This model with (JH, JI4 0) has been
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investigated previously, and a gap–gap QPT from the disordered
dimer phase to the antiferromagnetic phase was determined
exactly at JI=JH ¼ 2. It is well known that, when JI ¼ 0, the ground
state is composed of local dimers that are formed by spins on sites
2i�1 and 2i. In other words, the model reduces to the dimer
model with pairwise interactions. In the limit of strong antiferro-
magnetic coupling JI-þ1, it should have ideal Néel states (↑↓ or
↓↑) on sites 2i and 2iþ1. Subsequently, by Jordan-Wigner and
Bogoliubov transformations, the anisotropic version of the anti-
ferromagnetic spin-1/2 Heisenberg–Ising bond alternating chain
was re-examined [10], and low-energy excitations with a gap
when JIa2 were observed. The ground-state properties of such a
model with Dzyaloshinskii–Moriya interaction were investigated
recently [11], and an interesting nonanalytic behavior accompa-
nied by a gapless excitation spectrum was observed whenever the
condition JI=JH ¼ 2 is met. Recently, the ground-state behavior of
the frustrated quantum spin-1/2 two-leg ladder with the Heisen-
berg intra-rung and Ising inter-rung interactions, which can be
regarded as an extension of the spin-1/2 Heisenberg–Ising alter-
nating model, was examined [12]. A ground-state phase diagram
consisting of five ordered and one quantum paramagnetic (dis-
ordered) phase was obtained. The disordered phase was charac-
terized through short-range spin correlations, which indicate a
dominating character of the rung singlet-dimer state in this phase.

As mentioned above, these previous studies mainly focused on
the behavior of the ground-state energy, the excitation spectrum,
and the short- and long-range correlations. Many other interesting
ground-state properties, such as entanglement spectrum and
string orders, are still unclear. Especially, it is also an interesting
issue whether the spin-1 behavior observed in the spin-1/2
ferromagnetic–antiferromagnetic alternating chain [6,8] exists in
the spin-1/2 Heisenberg–Ising alternating chain. In this paper, we
would like to reinvestigate the spin-1/2 Heisenberg–Ising alter-
nating chain and analyze these issues. Based on the framework of
the infinite matrix product state (iMPS) representation [13], the
nonlocal string orders can be calculated directly by the iTEBD
algorithm developed by Vidal [14]. As will be shown below,
distinctive nonzero string orders and doubly degenerate entangle-
ment spectrum will be observed in the disordered
(Haldane) phase.

2. Methods and calculation details

For infinite 1D lattice systems, it has been shown [15,16] that
any states of them fulfilling the area law can be efficiently
described by matrix product state (MPS) [17,18]. Based on the
framework of the infinite matrix product state (iMPS) representa-
tion, the ground-state wavefunction jψ g〉 can be obtained by the
iTEBD method [14] by acting an imaginary time evolution operator
exp(�τĤ) on an arbitrary initial state jψ0〉. As the τ is large
enough, the resulting wavefunction exp(�τĤ)jψ0〉 will converge
to the ground state jψ g〉 of Ĥ . In the practical iteration process, the
operator exp(�δτĤ) with small enough δτ is expanded by a
Suzuki–Trotter decomposition as a sequence of two-site gates
U½i;iþ1�. We set δτ¼ 10�1

first, and then diminish it down to
δτ¼ 10�8 gradually. In order to recover the evolved state in the
iMPS representation, a singular value decomposition (SVD) is
performed and the χ largest singular values are obtained. The χ
denotes the cut-off bond dimension in the SVD process. The
wavefunction of a 1D two-period quantum system can be gen-
erally described by

jψ 〉¼ Tr ∏
N=2

i ¼ 1
Γaðm2i�1ÞΛaΓbðm2iÞΛb

" #
j…;m2i�1;m2i;…〉; ð2Þ

where mi represents the local spin physical index, and N denotes
the length of the spin chain. Γa and Γb are two 3-indexed tensors,
and Λa and Λb are two χ by χ diagonal matrices on odd (even)
bonds. To uncover possible four-period states, a four-period MPS
should be introduced, hence four tensors (Γa, Γb, Γc, and Γd) and
four diagonal matrices (Λa, Λb, Λc, and Λd) should be updated in
every iTEBD iteration process. The details of the iTEBD algorithm
can be found in references [14,19,20] and the references therein.
With the ground-state wavefunction jψ g〉, the expected value of a
physical operator Ô is obtained by 〈ψ gjÔjψ g〉, which is simplified
as 〈Ô〉 in the following.

3. Numerical results

The case with ferromagnetic Ising interactions (JI¼�1.0) on
even bonds (see Eq. (1)) is investigated in this section. The
spontaneous magnetization (Mz ¼ ð1=NÞ∑N

i ¼ 1M
z
i ) and stripe order

parameter (Mz
stripe ¼ ð1=NÞj∑N=2

i ¼ 1ð�1ÞiðMz
2iþMz

2iþ1Þj) are calculated,
and their curves versus varying Heisenberg coupling JH are plotted
in Fig. 1. The Mz

i ¼ 〈Szi 〉 denotes the local magnetization on the ith
site. According to our calculation results, we find that there exists a
fully polarized (ferromagnetic) phase with saturated magnetiza-
tion Mz ¼ 0:5 in the region JHo0. In the intermediate region
0o JHo0:5, the stripe order parameter Mz

stripe becomes nonzero,
which represent the existence of the antiferromagnetic stripe
phase (SP). The detailed local magnetization calculation shows
that this stripe phase has a spin configuration “⋯þ��þ⋯”. As
JH40:5, the ground state has absolutely vanishing local magneti-
zation on every site, therefore we call it a disordered phase.

Then, we calculate the long-range correlation function along
z-axis 〈sz

is
z
iþ L〉 (L¼1, 2, 3, …). It should be noted that the sα (α¼x,

y, and z) denote spin-1/2 Pauli matrices, therefore the spin-1/2
operator Sα¼1

2s
α. The saturated ferromagnetic correlation

(〈sz
is

z
iþ L〉 always equals 1) is obtained in the ferromagnetic phase

(FM) region JHo0. In the SP region, nonzero long-range correla-
tion (〈sz

isz
iþL〉a0) is found, and it has a periodic sign arrangement

“þþ��⋯”, which is a typical antiferromagnetic stripe correla-
tion. However, in the disordered phase, the correlations 〈sz

isz
iþL〉

decay very quickly with increasing L, which means that no

Fig. 1. Spontaneous magnetization Mz ¼ ð1=NÞ∑N
i ¼ 1M

z
i and stripe order parameter

Mz
stripe ¼ ð1=NÞj∑N=2

i ¼ 1ð�1ÞiðMz
2iþMz

2iþ1Þj of the stripe configuration “⋯þ��þ⋯”

versus varying Heisenberg coupling JH. M
z
i ¼ 〈Szi 〉 denotes the local magnetization

on the ith site. The FM denotes the ferromagnetic phase, and the SP represents the
stripe phase.
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