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a b s t r a c t

The atoms trapped in microcavities and interacting through the exchange of virtual photons can be
modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of
this system under the linear quenching process of laser field detuning, which shows XX criticality of the
geometric phase and also gives the result of quantum criticality for different quenching rates.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The recent experimental success in engineering strong inter-
action between photons and atoms in high quality micro-cavities
open up the possibility to use light matter system as quantum
simulators for many body physics [1–16]. The authors of Refs. [2–
4] have shown that an effective spin lattice can be generated with
individual atoms in micro-cavities that are coupled to each other
via exchange of virtual photons. The two states of spin polarization
are represented by two long lived atomic levels in the system.

Many body Hamiltonians can be created and probed in coupled
cavity arrays. In our previous study, we have explained the physics
of arrays formed with micro-optical cavities [4]. The atoms in the
cavity are used for detection and also for the generation of
interaction between photons in the same cavity. As the distance
between the adjacent cavities is considerably larger than the
optical wave length of the resonant mode, individual cavities can
be addressed. This artificial system can act as a quantum simulator.
There are quite a few experimental studies of quantum simulation
using light in cavities containing a qubit [17,18]. This micro-cavity
system shows different quantum phases and quantum phase
transitions [4,19].

To the best of our knowledge, here we not only study the
dynamics of geometric phase but also solve the nature of criticality
under a laser field detuning quenching process for different

quenching rates, which has not been addressed previously in the
literature of the cavity QED system [1–16].

Here we mention very briefly the essence of the geometric
phase in the condensed matter physics. The geometric phases have
been associated with a variety of condensed matter phenomena
[20–24]. Besides various theoretical investigations, geometric
phases have been experimentally tested in various cases, e.g. with
photons [25–27], with neutrons [28,29] and with atoms [30]. The
quantum state engineering of cavity QED has advanced in recent
times due to the rapid experimental/technological progress
[31–35]. We hope that the theoretical scheme which we propose
for the laser field detuning induce quenching process in the
dynamics of geometric phase will be observed experimentally in
photonic systems. In our study, we consider the three level system
in the cavity with radiation field and applied externally laser.
There are few experimental studies with three level system in the
presence of radiation [31–35].

In this paragraph we discuss very briefly the dynamics of
geometric phase and its relation in quantum phase transition
[19]. The generation of the geometric phase (GP) as a witness of a
singular point in an energy spectrum arises in all non-trivial
geometric evolutions. In this respect, the connection of the
geometric phase with quantum phase transition (QPTs) has been
explored very recently [36–39]. Since response times typically
diverge in the vicinity of critical point, sweeping the phase
transition with a finite velocity leads to a breakdown of adiabatic
condition and generates interesting dynamical (non-equilibrium)
effects. In the case of thermal phase transitions, the Kibble–Zurek
(KZ) mechanism [41,42] explains the formation of defects via rapid
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cooling. This idea of defect formation in the second order phase
transition has been extended to zero temperature QPTs [43,44] by
studying the spin models under linear quench. This is basic physics
of our present study in a cavity QED lattice under the quenching of
laser field detuning. The evolution of geometric phase is realized
through the adiabatic process. In the next section we will discuss
in detail how to restore the criteria of adiabaticity during the
linear quenching process.

The micro-cavities of a photonic crystal are coupled through
the exchange of photons. Each cavity consists of one atom with
three levels in the energy spectrum, two of them are long lived
and represent two spin states of the system and the other
represents excited state [2–4]. Externally applied laser and cavity
modes couple to each atom of the cavity. It may induce the Raman
transition between these two long-lived energy levels. Under a
suitable detuning between the laser and cavity modes, virtual
photons are created in the cavity, which mediate interactions with
another atom in a neighboring cavity. One can eliminate the
excited states by choosing the appropriate detuning between the
applied laser and cavity modes. One can achieve only two states
per atom in the long lived state and the system can be described
by a spin-1/2 Hamiltonian [2–4].

The Hamiltonian of our present study consists of three parts:

H ¼HAþHCþHAC : ð1Þ
The Hamiltonians are the following:

HA ¼ ∑
N

j ¼ 1
ωejej〉〈ejjþωabjbj〉〈bjj; ð2Þ

where j is the cavity index, ωab and ωe are the energies of the state
jb〉 and the excited state respectively. The energy level of state ja〉 is
set as zero, and ja〉 and jb〉 are the two stable states of an atom in the
cavity and je〉 is the excited state of that atom in the same cavity.
The following Hamiltonian describes the photons in the cavity:

HC ¼ωC ∑
N

j ¼ 1
c†j cjþ JC ∑

N

j ¼ 1
ðc†j cjþ1þh:cÞ; ð3Þ

where c†j ðcjÞ is the photon creation (annihilation) operator for the
photon field in the jth cavity, ωC is the energy of photons and JC is
the tunneling rate of photons between neighboring cavities. The
atom–photon interaction and the coupling with lasers are described
by

HAC ¼ ∑
N

j ¼ 1

Ωa

2
e� iωatþgacj

� ���ej〉〈aj��þh:c:
�
þ½a2b�:

�
ð4Þ

Here ga and gb are the couplings of the cavity mode for the
transition from the energy states ja〉 and jb〉 to the excited state.
Ωa and Ωb are the Rabi frequencies of the lasers with frequencies
ωa and ωb respectively.

The authors of Refs. [2–4] have derived an effective spin model
by considering the following physical processes: a virtual process
regarding emission and absorption of photons between two stable
states of neighboring cavity yields the resulting effective Hamilto-
nian as

Hxy ¼ ∑
N

j ¼ 1
Bsz

j þ ∑
N

j ¼ 1

J1
2
s†
j s

�
jþ1þ

J2
2
s�
j s�

jþ1þh:c:
� �

: ð5Þ

When J2 is real then this Hamiltonian reduces to the XY model.
Where sz

j ¼ jbj〉〈bjj�jaj〉〈ajj, sþ
j ¼ jbj〉〈ajj, s�

j ¼ jaj〉〈bjj

Hxy ¼ ∑
N

i ¼ 1
½Bsz

i þ J1ðsx
i sx

iþ1þsy
i s

y
iþ1�þ J2ðsx

i sx
iþ1�sy

i s
y
iþ1ÞÞ

¼ ∑
N

i ¼ 1
Bðsz

i þ Jxsx
i sx

iþ1þ Jys
y
i s

y
iþ1Þ ð6Þ

with Jx ¼ ðJ1þ J2Þ and Jy ¼ ðJ1� J2Þ.

We follow Refs. [2,45] to present the analytical expression for
the different physical parameters of the system

B¼ δ1
2
�β; ð7Þ

β¼ 1
2

jΩbj2
4Δb

Δb�
jΩbj2
4Δb

� jΩbj2
4ðΔa�ΔbÞ

�γbg
2
b�γ1g

2
aþγ21

g4a
Δb

� �
�ða2bÞ

� �
;

ð8Þ

J1 ¼
γ2
4

jΩaj2g2b
Δ2

a

þjΩbj2g2a
Δ2

b

 !
; ð9Þ

J2 ¼
γ2
2

ΩaΩbgagb
ΔaΔb

� �
: ð10Þ

where γa;b ¼ ð1=NÞ∑k1=ðωa;b�ωkÞ, γ1 ¼ ð1=NÞ∑k1=ððωaþωbÞ=
2�ωkÞ, and γ2 ¼ ð1=NÞ∑keik=ððωaþωbÞ=2�ωkÞ, δ1 ¼ωab�ðωa�
ωbÞ=2, Δa ¼ωe�ωa, Δb ¼ωe�ωa�ðωab�δ1Þ, δka ¼ωe�ωk, δ

k
b ¼

ωe�ωk�ðωab�δ1Þ, ga and gb are the couplings of respective
transition to the cavity mode, Ωa and Ωb are the Rabi frequency
of laser with frequencies ωa and ωb, respectively.

2. Model hamiltonian and quantum phases

We express our model Hamiltonian in the following form:

H¼∑
n
½ð1þαÞSxnSxnþ1þð1�αÞSynSynþ1þB∑

n
Szn�; ð11Þ

where Sαn are the spin-1/2 operators. We assume that the XY
anisotropy 0oαr1 and the magnetic field strength is hZ0. The
parameters correspondence between the micro-cavities and spin
chain are the following: J1 ¼ 1 and J2 ¼ α. Here, we calculate the
geometric phase and its dynamics under the quenching of mag-
netic field. In this model, the geometric phase of the ground state
is evaluated by applying a rotation of ϕ around the z-axis in a
closed circuit to each spin [36,46,47]. A new set of Hamiltonian Hϕ
is constructed from the Hamiltonian (H) as

Hϕ ¼UðϕÞHU†ðϕÞ; ð12Þ

where UðϕÞ ¼∏þM
j ¼ �Mexpðiϕsz

j =2Þ, and sj
z is the z component of

the standard Pauli matrix at site j. Here M is the integer which
relates with the lattice site numbers by the following relation:
2Mþ1¼N. The family of Hamiltonians generated by varying ϕ has
the same energy spectrum as the initial Hamiltonian and HðϕÞ is
π-periodic in ϕ. We use the Jordan–Wigner transformation to
convert the spin chain system to the one-dimensional spinless
fermions system. We use the following analytical relation:
aj ¼ ð∏io jsz

i Þs†
j and then use the Fourier transforms of the

fermionic operator, dk ¼ ð1=
ffiffiffiffi
N

p
Þ ∑N

j ¼ 1aj expð�2πjk=NÞ with
k¼ �M;…; þM. The Hamiltonian Hϕ can be diagonalized by
transforming the fermionic operators in the momentum space
and then using the Bogoliubov transformation. The ground state
jg〉 of the system is expressed as [36–39]

��g〉¼ ∏
k40

cos
θk

2

��0〉k��0〉�k� iexpð2iϕÞ sin θk

2

��1〉k��1〉�k

�
;

�
ð13Þ

where j0〉k and j1〉k are the vacuum and single fermionic excitation
of the k-th momentum mode respectively. The angle θk is given by

cos θk ¼
cos k�B

Λk
; ð14Þ

and Λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð cos k�BÞ2þα2 sin 2 k

q
is the energy gap above the

ground state. The ground state is a direct product of N spins, each
lying in the two-dimensional Hilbert space spanned by j0〉kj0〉�k

and j1〉kj1〉�k. For each value of k, the state in each of the two-
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