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a b s t r a c t

The thermodynamic properties of ferromagnetic spin chains have been the subject of many publications.
Still, the problem of how the spin–wave interaction manifest itself in these low-temperature series has
been neglected. Using the method of effective Lagrangians, we explicitly evaluate the partition function
of ferromagnetic spin chains at low temperatures and in the presence of a magnetic field up to three
loops in the perturbative expansion where the spin–wave interaction sets in. We discuss in detail the
renormalization and the numerical evaluation of a particular three-loop graph and derive the low-
temperature series for the free energy density, energy density, heat capacity, entropy density, as well as
the magnetization and the susceptibility. In the low-temperature expansion for the free energy density,
the spin–wave interaction starts manifesting itself at order T5/2. In the pressure, the coefficient of the
T5/2-term is positive, indicating that the spin–wave interaction is repulsive. While it is straightforward to
go up to three-loop order in the effective loop expansion, the analogous calculation on the basis of
conventional condensed matter methods, such as spin–wave theory, appears to be beyond reach.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the present study we rigorously answer the question of how
the spin–wave interaction manifests itself in the low-temperature
properties of ferromagnetic spin chains in a weak magnetic field.
Using the systematic method of effective Lagrangians, in the very
recent article [1], it was argued that the spin–wave interaction only
starts showing up at the three-loop level. However, the explicit
evaluation of the various Feynman graphs contributing at this order
to the partition function has not been addressed in that reference.
This quite elaborate task is the subject of the present paper.
We then provide the low-temperature series for the free energy
density, energy density, heat capacity, entropy density, as well as
the magnetization and the susceptibility.

The effective Lagrangian method relies on the fact that the low-
energy dynamics of the system is captured by the Goldstone bosons,
which result from the spontaneously broken global symmetry. In
the present case, the spin rotation symmetry of the Heisenberg
ferromagnet is spontaneously broken, Oð3Þ-Oð2Þ, and the spin–
waves or magnons emerge as Goldstone bosons. Conceptually, it is
quite remarkable that the effective Lagrangian method works in one
spatial dimension. It is well-known that in a Lorentz-invariant

framework, where the Goldstone bosons (pions, kaons, η-particle)
follow a linear, i.e. relativistic, dispersion relation, the method fails
in one spatial dimension. However, the ferromagnet, where the spin
waves obey a quadratic dispersion law, is quite peculiar: here the
systematic loop expansion perfectly works as we explain below.

In the low-temperature expansion of the free energy density,
the spin–wave interaction generates a term of order T5/2. The
general structure of this series is discussed, and the question of
which contributions are due to free magnon particles and which
ones are due to the spin–wave interaction is thoroughly answered.
In view of the nonperturbatively generated energy gap, we also
critically examine the range of validity of the effective low-tempe-
rature series, pointing out that it is not legitimate to take the limit
of a zero magnetic field.

The thermodynamic properties of ferromagnetic spin chains
have attracted a lot of attention over the past few decades and
many methods have been used to study these interesting one-
dimensional systems. While early investigations were based on
the Bethe ansatz [2–10], the modified spin–wave theory was the
method advocated in Refs. [11–13]. Further methods used to
address ferromagnetic spin chains include Schwinger-boson
mean-field theory [14,15], Green functions [16,18,17,19–23],
variants of spin-wave theory [24], scaling methods [25,17,26–31],
numerical simulations [32–38,22], and yet other approaches [39–44].
Given this abundant literature on ferromagnetic spin chains, it is
really surprising that the effect of the spin–wave interaction has been
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largely neglected. In particular, although ferromagnetic spin chains
can be solved exactly by e.g. the Bethe ansatz, the low-temperature
series derived from these exact results all refer to either a tiny or a
zero magnetic field, which does not cover the domain we are
interested in here.

We emphasize that in the problem under consideration, the
effective field theory approach is more efficient than conventional
condensed matter methods such as spin–wave theory, as it allows
one to systematically go to higher orders in the low-temperature
expansion – beyond the results provided in the literature. Above all
– for the first time, to the best of our knowledge – the manifestation
of the spin–wave interaction in the low-temperature behavior of
ferromagnetic spin chains in a magnetic field is discussed in a
systematic manner. Almost all previous theoretical studies that
analyzed the structure of the low-temperature series for ferromag-
netic spin chains were restricted to the idealized picture of the free
magnon gas. One exception is Ref. [24] which, however, refers to a
tiny magnetic field and appears to be not quite consistent, as we
point out in Section 5.

The rest of the paper is organized as follows. In Section 2 we
provide the reader with some basic aspects of the effective
Lagrangian technique. The low-temperature expansion of the parti-
tion function up to three-loop order is derived in Section 3. The
nontrivial part concerns the renormalization of a particular three-
loop graph which is discussed in detail in Section 4. The low-
temperature series for the free energy density, pressure, energy
density, entropy density, heat capacity, as well as the magnetization
and the susceptibility for ferromagnetic spin chains in a magnetic
field are given in Section 5. While our conclusions are presented in
Section 6, details on the numerical evaluation of a specific three-
loop graph are discussed in two appendices.

The model-independent and systematic effective Lagrangian
method, unfortunately, is still not very well known among con-
densed matter physicists. We would like to convince the reader
that this method indeed represents an alternative and rigorous
theoretical framework to address condensed matter systems, by
providing a list of articles which are also based on this method.
Ferromagnets and antiferromagnets in three and two space
dimensions were considered in Refs. [45–61]. Two-dimensional
antiferromagnets, doped with either holes or electrons, which
represent the precursors of high-temperature superconductors
were analyzed in Refs. [62–71]. Moreover, it was demonstrated
in Refs. [72–76] that the effective Lagrangian technique is perfectly
consistent with both numerical simulations based on the loop-
cluster algorithm and an analytically solvable microscopic model
in one spatial dimension.

2. Effective Lagrangian method

In a very recent article, Ref. [1], the low-temperature expansion
of partition function for the ferromagnetic spin chain in a weak
magnetic field was evaluated up to two loops. Here we perform
the analysis up to three-loop order, where the spin–wave interac-
tion comes into play. Essential aspects of the effective Lagrangian
method at finite temperature have been discussed in Section 2 of
Ref. [1] and will not be repeated here in detail. Below, we just
focus on some basic ingredients of the method. Although Section
2 of Ref. [1] is self-contained and contains all the necessary
information to understand the present calculation, the interested
reader may still find more details on finite-temperature effective
Lagrangians in Appendix A of Ref. [48] and in the various
references given therein.

The systematic construction of the effective field theory is
based on an inspection of the symmetries inherent in the under-
lying theory. In the present case, the effective Lagrangian, or more

precisely the effective action

Seff ¼
Z

d2x Leff ð1Þ

describing the ferromagnetic spin chain, must share all the
symmetries of the underlying Heisenberg model. These include
the spontaneously broken O(3) spin rotation symmetry (at zero
temperature), parity and time reversal. Note that here we refer to
zero external field. As discussed below, the magnetic field is
incorporated into the effective Lagrangian as a perturbation that
explicitly breaks O(3). One also has to identify the relevant low-
energy degrees of freedom entering the effective description. In
the case of the Heisenberg ferromagnet, these are the two real
magnon fields – or the physical magnon particle – that arise due to
the spontaneously broken spin symmetry Oð3Þ-Oð2Þ.

The various terms in the effective Lagrangian are organized
systematically according to the number of space and time deriva-
tives which act on the magnon fields. At low energies or tempera-
tures, terms which contain only a few derivatives are the dominant
ones, while terms with a larger number of derivatives are sup-
pressed [77–79]. The effective Lagrangian Leff thus amounts to a
systematic derivative expansion, or, equivalently, an expansion in
powers of energy and momentum. Hence the quantities of physical
interest (partition function, free energy density, magnetization, etc.)
derived from Leff also correspond to expansions in powers of
momentum which – at finite temperature – translate into expan-
sions in powers of temperature.

The leading-order effective Lagrangian for the one-dimensional
ferromagnet is of momentum order p2 and reads [50]

L2
eff ¼Σ

ϵab∂0U
aUb

1þU3 þΣμHU3�1
2
F2∂x1U

i∂x1U
i: ð2Þ

The fundamental object is the three-dimensional magnetization unit
vector Ui ¼ ðUa;U3Þ, where the two real components Uaða¼ 1;2Þ
describe the spin–wave degrees of freedom. The quantity H is the
magnetic field which points to the third direction, H

!¼ ð0;0;HÞ with
H¼ jH!j40. While the derivative structure of the above terms is
determined by the symmetries of the underlying theory, the two a
priori unknown low-energy coupling constants – the spontaneous
magnetization at zero temperature Σ, and the constant F – have to be
fixed experimentally, in a numerical simulation or by comparison
with the microscopic theory. It is important to point out that one
time derivative (∂0) counts as two space derivatives (∂x1∂x1 ), i.e., two
powers of momentum are on the same footing as one power of
energy or temperature: k2pω; T . This is characteristic of ferromag-
netic systems where the magnons display a quadratic dispersion
relation.

The next-to-leading-order effective Lagrangian for the ferro-
magnetic spin chain is of order p4 and involves the two effective
coupling constants l1 and l3 [1]:

L4
eff ¼ l1ð∂x1Ui∂x1U

iÞ2þ l3∂2x1U
i∂2x1U

i: ð3Þ

Higher-order pieces in the effective Lagrangian are not needed for
the present calculation.

The systematic perturbative evaluation of the partition function
relies on the suppression of loops by some power of momentum.
In one spatial dimension, ferromagnetic loops are suppressed by
one power of momentum [1]. The corresponding Feynman graphs
for the partition function up to order p5 are depicted in Fig. 1. The
leading temperature-dependent contribution stems from the one-
loop graph 3 which is of order p3, as it involves a vertex from L2

eff
(p2) and one loop (p). The one-loop diagram 5d with an insertion
from L4

eff is of order p5, as it involves L4
eff (p4) and one loop (p).

Finally, the two-loop (three-loop) diagrams are of order p4 (p5) as
they involve one (two) more loops with respect to diagram 3.
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