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a b s t r a c t

Within the framework of semi-classical approach, the Landau levels in the gapped and gapless graphene
in crossed magnetic and electric fields are investigated. We showed that the Landau levels and the
distance between them depend on an applied electric field. This is merely due to the non-quadratic
electron spectrum and, therefore, it is a unique feature of graphene. At a first approximation, we
investigated the effects of electron–electron interaction on the Landau levels. We obtained a general
expression for the thermodynamic potential. We concluded that the magnetic properties of graphene can
be controlled using the electric field. It is of great practical interest.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graphene, a monolayer of carbon atoms, is an ideal structure
for studying the physics of two-dimensional systems [1]. The
symmetry of the graphene lattice (the hexagonal structure) leads
to unique electron spectrum near the Dirac point (K point of the
Brillouin zone). Indeed, the energy spectrum consists of two
absolutely identical cones (the valence band and the conduction
band), which osculate at the Dirac point. This spectrum is stable
with respect to the Coulomb interaction [2]. The non-quadratic
dependence of the Hamiltonian on the momentum results in a
fundamental change in many of the fundamental theories and
effects. For example, in Ref. [3], the perturbation theory was
constructed for systems with a Hamiltonian, which depends
linearly on the momentum. The linear dispersion law of graphene
electrons is the reason that in graphene there are qualitatively
new effects. For example, the static conductivity of graphene is not
zero even at zero carrier concentration [4]. Klein tunneling, known
from quantum electrodynamics, is observed in graphene [5]. These
and many other unique electronic properties make graphene and
graphene-based systems a promising material for different optoe-
lectronic and thermoelectric applications [6–11].

Here we will study the problem of Landau levels in gapped and
gapless graphene in crossed magnetic and electric fields. It should

be emphasized that graphene exhibits unique properties in mag-
netic field. For example, Landau levels in graphene are not
equidistant [1]. There is zero Landau level. The difference between
the first two Landau levels in a magnetic field of 10 T is about
1000 K. This leads to an unusual magneto-transport: fractional
quantum Hall effect, which can be observed at room temperature,
giant magneto-optical and thermo-magnetic effects etc. Graphene
appears as a promising material for magneto-electronics and
magneto-optics due to these properties. Obviously, the graphene
electrons should behave unusually in crossed magnetic and
electric fields. Indeed, yet Lifshitz and Kaganov [12,13] showed
that in case with the non-quadratic dependence of electron energy
on the momentum, the resonance frequency in crossed magnetic
and electric fields depends on the applied electric field. This effect
can be used to analyze the forms of isoenergy surfaces in
semiconductors [12]. For graphene, the dependence of the Landau
levels on the electric field provides an additional opportunity to
control the magneto-transport in it. It should be emphasized that
such dependence disappears for a quadratic electron dispersion
law. In this sense, this effect is another unique feature of graphene.

2. The quasi-classical approach. The Landau levels in gapless
graphene

The Landau levels in gapless monolayer graphene in crossed
magnetic and electric field were investigated in Ref. [14]. Unfortu-
nately, the authors of Ref. [14] did not refer to the pioneering
works of Lifshitz and Kaganov [12,13]. The present work fills the
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gap. Moreover, in contrast to Ref. [14], we will use the quasi-
classical approach based on the quantization conditions of Lifshitz-
Onsager type [15], as Lifshitz and Kaganov. This condition for the
two-dimensional system can be written as (we assume that the
plane of electronic system is XY and the magnetic field is directed
along the Z axis)

AðεÞ ¼ 2πℏeH
c

ðnþγsÞ; n¼ 0;1;2; :::; ð1Þ

where H is the magnetic field strength, A εð Þ is the area enclosed by
the electron trajectory at constant energy ε pð Þ ¼ ε, γs ¼ γþ
1=2 m=m

� �
s with s¼ 71, m εFð Þ ¼ 2πð Þ�1dA=dε is the cyclotron

mass, γ is the constant, γ ¼ 1=2 for non-relativistic systems and
γ ¼ 0 for graphene. In this study, we neglect the spin splitting of
the levels. Function A εð Þ can be found from the following expres-
sion [12]

AðεÞ ¼
Z

dε∮
dl
υðpÞ; ð2Þ

where dl is the differential of curve arc, ε¼ const in momentum

space, υ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2x þυ2y

q
.

The tight-binding Hamiltonian for electrons in graphene con-
sidering the ability of electrons to hop to the nearest atoms has the
form

H¼ �t∑
i;j
ðaþ

i bjþh:c:Þ; ð3Þ

where t � 2:8 eV is the nearest-neighbor hopping energy between
different sublattices, aþ

i (ai) annihilates (creates) an electron from
sublattice A, bþ

is ; bis are the analogous operators for the sublattice В.
The energy spectrum derived from this Hamiltonian has the form

εðqÞ ¼ νbt ΚðqÞ
�� ��; ð4Þ

ΚðqÞ ¼∑
δ
exp iqδ=ℏ

� �¼ 2 exp iqxa=2
� �

cos
ffiffiffi
3

p
qya=2

� �
þexp � iqxa

� �
;

where q is the two-dimensional wave vector of electrons, a� 1:42 Å
is the carbon–carbon distance, δ is the carbon–carbon distance
vector, νb ¼ 71 is the band index, νb ¼ þ1 corresponds to the
conduction band, νb ¼ �1 corresponds to the valence band. The
energy spectrum near the Dirac point Q ¼ ð2π=3a;2π=3

ffiffiffi
3

p
aÞ has

the form

εðkÞ ¼ νb3ta k
�� ��=2¼ νbυFℏ k

�� ��;
where k¼ q�Q , υF � 108 cm=s is the Fermi velocity of electrons in
graphene. It can be easily shown that for such spectrum the
trajectory is circle, i.e. A εð Þ ¼ πε2=υ2F . Then we obtain following
expression for Landau levels

εn ¼ sgnðnÞ
ffiffiffi
2

p
υFℏl

�1
H

ffiffiffiffiffiffi
nj j

p
; ð5Þ

where lH ¼ ðℏc=eHÞ1=2 is the magnetic length. The expression (5)
completely coincides with the expression obtained by solving the
Dirac equation. It means that the quasi-classical approach is very
effective in this case. To find the Landau levels in crossed fields (we
assume that the electric field directed along the axis X) we can use
generalized Lifshitz-Onsager conditions [12]

AðεnÞ ¼ 2πℏeH
c

nþγð Þ; ð6Þ

where AðεnÞ is an area enclosed by the electron trajectory at constant
energy εnðpÞ � εðpÞþυ0p¼ ε, where υ0 ¼ c EH½ �=H2 is the average
electron drift velocity, which is directed perpendicularly to E and H.
Indeed, εnðpÞ is saved in crossed fields (see Appendix). In our case
E ? H and υ0 ¼ cEey=H, where ey is unit vector along the axis Y. Then

εnðpÞ � εðpÞ�υ0py. It is easy to show that in this case the curve
εn ¼ const is an ellipse with the following parameters:

a¼ ε=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2F �υ20

q
, b¼ ευF=ðυ2F �υ20Þ, i.e. A εð Þ ¼ πab¼ πε2υF= υ2F �υ20

� �3=2.

For Landau levels, we obtain

εn ¼ sgnðnÞð1�β2Þ3=4
ffiffiffi
2

p
ℏυF l

�1
H

ffiffiffiffiffiffi
nj j

p
; ð7Þ

where β¼ υ0=υF . In this paper, we will consider a case when
υ0oυF . In reality, the electrons drift perpendicularly to E and H.
This means that total energy must be written as

εn;py ¼ sgnðnÞð1�β2Þ3=4
ffiffiffi
2

p
ℏυF l

�1
H

ffiffiffiffiffiffi
nj j

p
þυ0py

However, in this paper we are interested in only the quantized
part of the energy spectrum.

The distance between first two Landau levels can be obtained
from Eq. (7)

Δε¼ ð1�β2Þ3=4
ffiffiffi
2

p
ℏυF l

�1
H ð8Þ

i.e. a distance between Landau levels depends on the applied
electric field. Such dependence disappears for the quadratic
spectrum.

3. The gapped graphene. The electronic spectrum and Landau
levels

The equivalence distortion of sublattices in graphene leads to
the opening of band gap in the spectrum. The Hamiltonian of the

Fig. 1. The Landau levels in graphene in crossed fields for different value of electric
field and band gap width. (a) n¼1 and (b) n¼2.
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