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a b s t r a c t

We solve analytically the time dependent Schrödinger equation of a two-dimensional quantum oscillator
subjected to a time-varying force. We apply the results to the case of a linearly and circularly polarized
harmonic force. The main result is that the quantum oscillator orbit center performs a two-dimensional
closed loop (elliptical) driven by the force. This theory has been specifically applied to the problem of a
two-dimensional electron system subjected to a static and uniform magnetic field and radiation to
explain the striking effects of radiation-induced magnetoresistance oscillations and zero resistance
states.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of low-dimensional systems is attracting much
attention in the recent years. Basic and applied research have
focussed on the study of optical and transport properties of these
systems. As a result, important and unusual properties have been
discovered when, for instance, two-dimensional electron systems
(2DESs) are subjected to external AC or DC fields. We can stress
microwave-induced resistance oscillations (MIRO) and zero resis-
tance states (ZRS) [1–4]. In this paper we report on a theoretical
model which provides an exact solution of the quantum motion of
a two-dimensional (2D) quantum oscillator (electron with mag-
netic field) exposed to an arbitrary time-dependent force [5–7].
As a direct application, the case of a harmonic force has been
considered. The surprising result is that the guiding center of the
quantum oscillator is spatially radiation-driven performing closed
loops (elliptical trajectories) in the x�y plane. The results pre-
sented in this paper can be applied and generalized to any
quantum mechanical oscillator excited by a time-dependent force.

2. Theoretical model

We study a 2DES (x�y plane) under the influence of a static
magnetic field aligned in the z-direction and a time-dependent
force acting in any direction of such a plane. Considering the
symmetric gauge for the vector potential of B ð AB
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where wc ¼ eB=m is the cyclotron frequency, Lz is the z-component
of the electron total angular momentum and Fx and Fy are
the components of the time-dependent force. Introducing this
Hamiltonian in the time-dependent Schrödinger equation HΨ ¼
iℏ∂Ψ=∂t, we can write

� ℏ2

2m
∂2Ψ
∂x2

þ∂2Ψ
∂y2

� �
þmw2

c

8
ðx2þy2ÞΨ � iℏwc

2
x
∂Ψ
∂y

�y
∂Ψ
∂x

� �

�½xFxðtÞ�yFyðtÞ�Ψ ¼ iℏ
∂Ψ
∂t

ð2Þ

Now we introduce new spatial coordinates, ξ¼ x�aðtÞ and
η¼ y�bðtÞ, and propose the following solution for the time-
dependent Schrödinger equation:

Ψ ¼ϕðξ;η; tÞexg1 þyg2 ð3Þ

where g1, g2, a and b are to be determined. The corresponding
change of variables (x; y-ξ;η) has been carried out and the
Schrödinger equation transforms into:
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Choosing now g1, g2, a and b so that the coefficients of ∂ϕ=∂ξ,
∂ϕ=∂η, ξϕ and ηϕ vanish
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then the Schrödinger equation can be written as
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is the classical Lagrangian corresponding to a charged particle in the
x–y plane subjected to a uniform and perpendicular magnetic field
[8]. After some algebra and using Eqs. (5)–(8) we obtain a system of
two coupled equations:
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In vectorial form, Eqs. (11) and (12) become
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which is the
classical equation of motion of an electron subjected to a perpendi-
cular magnetic field B and an external time-dependent force
(FxðtÞ i

!þFyðtÞ j
!

). Thus a(t) and b(t) are the corresponding classical
solutions of Eq. (14).

The previous Schrödinger equation (Eq. (9)), shows that the
spatial variables ξ and η, and t are now separable:
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Now, we propose a solution for ϕ, ϕ¼ϕ1ðξ;ηÞϕ2ðtÞ, and we can
separate the Schrödinger equation into two equations, one
depending on spatial variables and the other on time. Therefore,
for spatial variables:

� ℏ2

2m
∇2
ξ;η�

iℏwc

2
ξ
∂
∂η

�η
∂
∂ξ

� �
þ1
2
m

wc

2

� �2
ξ2þη2
� �" #

ϕ1 ¼ ENϕ1

ð16Þ

and for time:
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EN being a constant that can be identified as the energy.
The solution for the time-dependent equation is straightfor-

ward:
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The spatial-dependent equation can be expressed as
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is the Hamiltonian of an electron in a two-dimensional parabolic
confinement caused by B, and
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These wave functions have analytical expressions and corre-
spond to the well-known Fock–Darwin states [9]. Thus, we can
write the solution of the spatial equation in the usual polar
coordinates of a Fock–Darwin state ðr;θÞ as
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where n is the radial quantum number, m is the angular momentum
quantum number, Ljmj

n are the associated Laguerre polynomials and lB
is the effective magnetic length. For the polar coordinates r2 ¼ ξ2þη2

and reiθ ¼ ξþ iη. The states energy is given by
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Therefore we can write for the wave function:
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Once ϕ has been calculated, we can proceed and obtain the final
expression for the total wave function:
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This is the exact form of the analytical solution of a quantum oscillator
under the influence of time-varying force (two-dimensional electron
system under a static magnetic field and a time dependent force).

3. Results

The main result is that, apart from phase factors, the wave
function Ψ is the same as a Fock–Darwin state where the center of
the Larmor orbits is displaced by a(t) in the x-direction and b(t) in
the y-direction. The magnitude and nature of this displacement
will depend on the type of the time-dependent force. If the time
dependent force is harmonic (radiation), several cases can be
considered depending on the orientation of the force components
inside the 2D plane.

If we consider that the harmonic time-dependent force F(t) is
oscillating in one plane (linearly polarized), this plane can be in
different polarization angles (α) regarding the transport direction,
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