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a b s t r a c t

We studied theoretically the effects of hydrostatic pressure and temperature on the binding energy of
shallow hydrogenic impurity in a cylindrical quantum dot (QD) using a variational approach within the
effective mass approximation. The hydrostatic stress was applied along the QD growth axis. The
interactions between the charge carriers and confined longitudinal optical (LO) phonon modes are
taken into account. The numerical computation for GaAs=Ga1�xAlxAs QD has shown that the binding
energy with and without the polaronic correction depends on the location of the impurity and the
pressure effect and it is more pronounced for impurities in the QD center. Both the binding energy and
the polaronic contribution increase linearly with increasing stress. For each pressure value, these
energies are also found to decrease as the temperature increases. The results obtained show that in
experimental studies of optical and electronic properties of QDs, the effects of pressure, temperature and
polaronic correction on donor impurity binding energy should be taken into consideration.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The advances in semiconductor nanofabrication technology
make it possible to produce semiconductor nanostructures whose
characteristic dimensions are similar to the electronic de Broglie
wavelength. Because of their reduction of dimensionality, the
nanostructures exhibit many new physical effects [1–13] which
are extremely interesting from the point of view of fundamental
physics and also for their potential applications in microelectronic
device technology. Thus, much theoretical and experimental
studies have recently been devoted to understand and explore
the physical properties of these systems. Optical measurements of
semiconductors are of great value for the understanding of the
physical nature of confined electron, hole, and coulomb-bound
states such as impurities and excitons. Impurities and excitons in
semiconductor heterostructures are known to promote a number
of qualitative changes in electronic and optical properties which
may be properly controlled by adequate choice of the sample
geometry and external fields [14–27].

Theoretical studies related to the effects of hydrostatic pressure
and temperature on shallow-donor impurity and exciton states in

the considered low-dimensional structures have been reported
[28–40]. The results found by Oyoko et al. [28] and Lopez et al. [29]
have shown that the donor binding energy of a shallow impurity
increases with increasing stress and decreasing QD sizes. The same
behavior was found by Elabsy [30] in the case of QW hetero-
structures. Gerardin et al. [31] have investigated the effects of
electric field and hydrostatic pressure on the donor binding
energies in a spherical QD. They have found that the hydrostatic
pressure increases the donor ionization energy and that the effect
is larger for a smaller dot. Oyoko et al. [32] have calculated the
effects of hydrostatic pressure and temperature on shallow-
impurity related optical absorption spectra in quantum wells. Kasa-
poglu [33] has studied the hydrostatic pressure and temperature
effects on donor impurities in GaAs=Ga1�xAlxAs double quantum
well under the external fields. John Peter et al. [34] have calculated the
binding energies of hydrogenic donors in GaAs=Ga1� xAlxAs single
quantum well as a function of the pressure and the temperature.

Taking into account the optical phonons, several works have
studied the pressure dependence of the optical phonon in low
dimensional semiconductors [35–40]. The presence of applied
hydrostatic stress introduces an extra confinement which is added
to the geometrical one, and modifies the carrier motion and the
nature of corresponding wave function. We have studied in our
previous works the hydrostatic stress [13] and the temperature
[41] dependence of exciton–phonon coupled states in a cylindrical
QD. To our knowledge, a theoretical study for the donor binding
energy of shallow impurity in QD systems with consideration of
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confined LO phonon modes contribution and simultaneous effects
of hydrostatic pressure and temperature has not been given.

GaAs/AlGaAs QD is an interesting system because of its several
advantages compared to others. Recently, a new experimental
method permits us to obtain GaAs=Ga1� xAlxAs QD via multistep
self-assembly [42]. These structures are characterized by some new
properties which allow us to calculate the electronic ones without
the complication of uncertain composition and strain profiles [42].

In the present paper we report a variational calculation in the
effective mass approximation of the binding energy of shallow
donor impurity in a cylindrical QD under simultaneous effects of
hydrostatic pressure and temperature. The pressure is applied along
the z-direction. In the present calculation, the coupling of the
confined LO phonon modes with the charge carriers (electron and
ion) is considered. According to the properties of QD structures and
the on-center impurity position [43,44], the effect of confined LO
phonon modes to the binding energies is much more important
than that due to the surface optical phonon modes. Therefore these
surface phonons are not included in this work. This approximation
is valid in the case of the present study in which the cylindrical QD
has a radius RCan and height H greater than � an (Bohr radius).
Furthermore, the position of the impurity has a strong influence.
The binding energy is much larger for on-center than on-edge
impurity positions in such structures [27,45–47]. For these reasons,
in our investigation, we focus our attention on the on-center
impurity position. The quantum confinement is described by
a finite deep potential well. The paper is organized as follows. After
a brief introduction, we describe in Section 2 the Hamiltonian and
the model of calculation. The numerical results and discussions are
presented in Section 3, and we give our conclusions in Section 4.

2. Formalism

Let us consider an electron which is confined perfectly in
a cylindrical QD of radius R and height H¼2d embedded in barrier
material semiconductor. Within the framework of the effective
mass and non-degenerated-band approximations, the Hamilto-
nian of a shallow hydrogenic impurity versus pressure and
temperature can be written as

HðP; TÞ ¼HeðP; TÞþHLOðP; TÞþHe�LOðP; TÞþHion�LOðP; TÞ; ð1Þ
where He is the electronic Hamiltonian which is given by

Heðr; P; TÞ ¼ � ℏ2

2mnðP; TÞ∇
2� e2

ɛðP; TÞrþVbðr; P; TÞ; ð2Þ

where mnðP; TÞ is the electronic effective mass and r¼ ½ρ2þ
ðz�ziÞ2�1=2. zi is the impurity position along the z-axis. The
dielectric constant ɛðP; TÞ at pressure P and temperature T is taken
as the static constant ɛ0ðP; TÞ, in the absence of the confined LO
phonon modes, and the high frequency dielectric constant
ɛ1ðP; TÞ, in the presence of the confined LO phonon modes.
Vbðr; P; TÞ is the electron confining potential in the QD at pressure
P and temperature T, given by

Vbðr; P; TÞ ¼
0 if ρrR and jzjrd

V0ðP; TÞ otherwise

(
: ð3Þ

We can write the expression of V0ðx; P; TÞ as follows [33]
V0ðx; P; TÞ ¼ 0:6ΔEgðx; P; TÞ, where

ΔEgðx; P; TÞ ¼ΔEgðx;0;0Þ�Pð1:3� 10�3Þx�Tð1:11� 10�4Þx; ð4Þ
ΔEgðx;0;0Þ can be expressed as

ΔEgðx;0;0Þ ¼ EgGað1� xÞAlðxÞAsðxÞ�EgGaAsðxÞ ¼ 1:155xþ0:37x2: ð5Þ
In the case in which the dimensions of the QD are greater than an our
approximation is good mn

wðP; TÞ ¼mn

bðP; TÞ and ɛwðP; TÞ ¼ ɛbðP; TÞ.

In Eq. (1), HLO, He� LO and Hion�LO are, respectively, the Hamil-
tonian operator for the confined LO phonon modes, the electron–
LO phonon interaction and the ion–LO phonon coupling:

HLOðP; TÞ ¼ ∑
l;n1

ℏωLOaþ
ln1aln1; ð6Þ

aþ
ln1(aln1) are creation (annihilation) operators for the confined LO

phonon modes of the ðl;n1Þ th mode, with frequency ωLO and wave
vector ðK jj ¼ χn1=R;Kz ¼ lπ=2dÞ where χn1 is the n1-th root of the
Bessel function of the zero order:

He�LOðP; TÞ ¼ �eϕLOðr; P; TÞ; ð7Þ
where

ϕLOðr; P; TÞ ¼ ∑
l;n1

ℏ
8πωLO

� �1=2

ðaln1þaþ
ln1Þϕ7 ðrÞ; ð8Þ

after obtaining the expression of ϕ7 ðrÞ from Ref. [48], we express
He�LOðP; TÞ and Hion� LOðP; TÞ as

He� LOðP; TÞ ¼ �∑
n1
J0

χn1
R
ρ

� �
�

∑
l ¼ 1;3‥

Vln1ðP; TÞ cos lπ
2dz
� �

aln1þaþ
ln1

� �
þ ∑

l ¼ 2;4‥
Vln1ðP; TÞ sin lπ

2dz
� �

aln1þaþ
ln1

� �
2
664

3
775;
ð9Þ

and

Hion� LOðP; TÞ ¼∑
n1

∑
l ¼ 1;3‥

Vln1ðP; TÞðaln1þaþ
ln1Þ; ð10Þ

where

V2
ln1ðP; TÞ ¼

1
V

4πe2ℏωLO

χn1
R

� �2J21 χn1
� �

1þ lπR
2dχn1

� �2� 	 1
ɛ1ðP; TÞ�

1
ɛ0ðP; TÞ

� �
; ð11Þ

V ¼ 2πR2d being the volume of the cylindrical dot.
To deal with the Hamiltonian of this system, we shall adopt the

variational treatment developed by Lee et al. [49], for quasi-zero-
dimensional systems. To facilitate the calculation, we use the
following unitary transformation:

U ¼ exp ∑
l;n1

ðf ln1aþ
ln1Þ�cc

 !
; ð12Þ

where fln1 is the variational parameter to be selected by minimizing
the energy of the system. The wave function of the system can be
written as

∣ψðρ; z; kÞ〉¼ jϕðρ; zÞ〉jNl;n1〉; ð13Þ
where ϕðρ; zÞ is the particle wave function confined in a finite
cylindrical potential well and jNl;n14 is the wave function of the
phonon field in the particle number representation.

We have

aþ
l;n1jNl;n1〉¼ Aþ jNl;n1þ1〉; ð14Þ

al;n1jNl;n1〉¼ A� jNl;n1�1〉; ð15Þ
where Aþ and A� are the normalization coefficients. For the
normalization condition we have

〈Nl;n171jNl;n171〉¼ 1;

jA� j2 ¼ 〈Nl;n1jaþ
l;n1al;n1jNl;n1〉¼ ηLO; ð16Þ

jAþ j2 ¼ 〈Nl;n1jal;n1aþ
l;n1jNl;n1〉¼ 1þηLO; ð17Þ

where ηLO is the average number of the phonon with frequency ωLO:

ηLO ¼ 1

exp
ℏωLO

KT

� �
�1

: ð18Þ
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