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Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and
hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which
accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating
tumor cells is an emerging tool for cancer biology research and clinical cancer management including the
detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use
either affinity, size or density capturing methods. We combine multiphysics simulation techniques to
understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation
points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine
affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient
field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment

combines magnetic field computation, fluid dynamics and discrete particle dynamics.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of circulating tumor cells (CTCs) supports the
monitoring of tumor growth and can be used to control the
success of therapies. Microfluidic chips help to detect, to identify
and to count these cells in peripheral blood. First time observed in
1869 [1] it becomes possible to gain a better understanding of how
metastases form through the analysis of CTCs with the advance of
technology platforms. Due to their rare appearance existing
microfluidic filters [2] cannot find every single CTC in the blood
flow. In these devices the distinct properties (size, affinity, density)
of the tumor cells are used to filter them. The technical challenge
is to detect, count and isolate one CTC over one billion cells [3] (1-
100 tumor cells per ml blood).

A promising approach from Saliba et al. uses self-organizing
chains of ferromagnetic biofunctionalized beads [4]. An array of
magnetic traps is prepared by microcontact printing in a micro-
fluidic channel. Single particle chains line up which create a sieve-
like structure. This method has a limitation of flow rate due to
decreasing stability with higher velocity. Our proposed chip
technology uses thin soft magnetic seeding points with a diameter
several times larger than the bead diameter. We will analyze the
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microfluidic behavior of soft magnetic beads attracted by this
seeding points in multiphysics simulations.

1.1. Multiscale simulation environment

A microfluidic chip (Fig. 1A) is placed on the top of a single or
multiple permanent magnets. On the bottom of the chip a
hexagonal array of soft magnetic cylinders is placed. The cylinders
act as a accumulation point (seeding point) for soft magnetic
particles in the fluid flow. When applying the permanent magnets
on the microfluidic chip the soft magnetic particles self-organize
according to the field created by the seeding points and the
permanent magnets. The behavior of magnetic beads close to a
single seeding point is discussed in Section 3.3. Cuboidal or
cylindrical NdFeB permanent magnets are the magnetic source
for the given scenario. Akoun [5] showed the analytic calculation
of the magnetic field created by a cuboidal permanent magnet.
Derby [6] did the same for cylindrical permanent magnets. To get a
higher magnetic field H several magnets are combined having
superposition of the field values (Fig. 1A). In order to reduce
simulation time and computational cost we are focusing on special
areas in the microfluidic channel. Fig. 1B shows the microfluidic
chip with the seeding point array at the bottom. The light green
seeding points will be taken into account for further investigation.
The simulation boundaries are set according to the results of
Section 3.1.
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Fig. 1. Multiscale simulation environment: (A) magnetic field source: N permanent
magnets, (B) zoom into the microfluidic chip: hexagonal array of soft magnetic
seedings points with light areas of interest, (C) trajectories of soft magnetic
particles, (D) magnetic field from permanent magnets and soft magnetic disks
for a closed simulation box filled with soft magnetic beads.

The magnetic field H magnetizes the interacting seeding
points. They create a highly non-homogeneous magnetic field in
the microfluidic chip. Fig. 1D shows the simulation area close to a
single seeding point. Soft magnetic particles are randomly filled
into the simulation box and interact with each other, the perma-
nent magnets and the seeding points.

Looking at a larger scale the trajectories of the magnetic beads
to the seeding points are calculated with the software package
Comsol [7] (Fig. 1C). The particle distribution, i.e. the number of
beads close to a single seeding point, depends on the fluid velocity,
the applied magnetic field, the chip geometry as well as the
seeding material.

2. Methods
2.1. Magnetic particle dynamics

Under the influence of a magnetic field a magnetic moment m
is created in every particle. With the moments of two nearby
beads and the vector T pointing from bead 1 to bead 2 we got a
formulation (Eq. (1)) of the interaction force F; for bead 2 and vice
versa for bead 1 [8]:
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The gradient force ?g on a bead is given by the negative gradient

of the energy of the magnetic dipole moment m in the field B. Eq.

(2) shows this 3-dimensional vector with the assumption of

homogeneous magnetization inside the beads (a? m=0):
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In our preliminary work we assumed that the external field is

inhomogeneous only in one dimension and also the field itself has
only a single direction [9]. This assumption reduces computational

time a lot. We derived only the z-field in the y-direction leaving a
resulting force Fgy =m,d,B,. But if we want to have a complex
magnetic field from several permanent magnets and thin soft
magnetic disks, we have to consider all three dimensions.

During simulation this force could be calculated in every
timestep for every single bead which slows down the simulation.
Another possibility is the initial calculation of the external field H
and its derivatives 9;B; at the beginning of the simulation in a
Cartesian grid. And during the simulation this fixed values are
interpolated according to the non-fixed position of the bead.

We implemented both methods, the direct calculation in every
timestep, and the particle-in-cell method for faster computation in
the open-source particle simulator Yade [10].

2.2. Particle-in-cell method

The particle-in-cell method works with a fixed Cartesian grid
(Fig. 2a). In our case the simulation box in Fig. 1D is the boundary
of the particle simulation and contains the fixed grid with uniform
grid length I, qy,. Before the actual simulation of iil)teracting
magnetic beads, initial values for the external field H and all
derivatives 9;B; need to be calculated in every single grid node. To
get the magnetic field values in the grid several steps are
performed.

1. Analytic calculation of the magnetic field from permanent
magnets at seeding points of interest using Ref. [5] for cuboidal
and Ref. [6] for cylindrical permanent magnets.

2. Numerical calculation of the field H in every grid point of the
simulation box using the finite element micromagnetic package
FEMME [11]. The amount of seeding points taken into account
for the field calculation in the simulation box is derived in
Section 3.1.

3. Numerical differentiation of the grid to get all values of 9;B;
using three point formulas [12]. They include the point before
and after the calculated point (centered difference formula). At
the edge points a forward or backward difference formula is
used as there are no points outside the grid. The differentiation
generates a second-order accurate approximation with a trun-
cation error of O(lésim).

During the simulation in every timestep the following tasks are
performed to get the magnetic induced force on the beads:

1. Interpolate magnetic field H and derivatives 0;B; for every
single magnetic bead according to the position in grid cell using
tricubic interpolation [13] (Fig. 2b). N N

2. Calculate magnetic moment in every single bead (M =yH)
using interpolated field H from the grid.

3. Calculate and add force on bead due to magnetic particle
interaction (Eq. (1)).

4. Calculate and add force on bead due to magnetic gradient field
(Eq. (2)) using interpolated derivatives 9;B; from the grid.
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Fig. 2. (a) Fixed Cartesian grid with magnetic particles. (b) Interpolation of field
and derivatives according to particle position.
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