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In this paper we propose a fast iterative method for the analysis of ferromagnetic shields taking into account
the nonlinearity of the magnetic characteristic. This novel iteration scheme handles the nonlinear B–H
characteristic by means of the Fixed Point technique. Moreover, the convolution properties of the field
problem are exploited by means of the FFT operator. A case study is presented to demonstrate the
performance of the proposed method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper focuses on the analysis of ferromagnetic thin shields
taking into account the nonlinear characteristic of the magnetic
material. Several numerical techniques are described in the litera-
ture, such as FEM [1] or FEM/BEM [2], but some drawbacks could
arise when dealing with thin slabs of ferromagnetic materials. For
instance, standard FEM can lead to a mesh with high number of
unknowns and numerical instabilities can occur [1]. Moreover, a
linear approximation of the magnetic characteristic is often assumed
but, in case of strong source field or magnetic shields close to the
source, the magnetic flux density inside the shield could reach
saturation and therefore the planning/design of the shield should
take into account the nonlinearity of the material. In this paper we
propose a method that handle the nonlinearity of the material by
means of the Fixed Point (FP) technique [3] and, at the same time,
exploits the convolution properties of the field problem by means of
the FFT operator [4]. In the following section the theoretical back-
ground is explained. In Section 3 the Fast Fixed Point (Fast FP)
technique is introduced. In Section 4, the effectiveness of the
proposed algorithm is compared with the Standard FP technique
[5]. Finally, in the same section, the proposed formulation is applied
to the case of field mitigation of a 1250 kVA transformer.

2. Theoretical background

The magnetic field H inside the wall of the magnetic shell can
be written as

H¼HsþHm; ð1Þ

where Hs is the applied magnetic field generated by the external
sources and Hm is the magnetostatic field contributed by the
magnetization M inside the magnetized wall. The numerical
computation of the magnetostatic field term Hm can be obtained,
following [6], by discretizing the shell volume into rectangular
blocks and representing the magnetization by a discrete distribu-
tion of fields Mi at points ri. Here,M is the corresponding averaged
value on the ith element. The magnetostatic field at ri is then

Hmi ¼ �∑
j
Nðri�rjÞMj; ð2Þ

where N is the demagnetizing tensor [6–8] and Hmi is the averaged
magnetostatic field on the ith element. The magnetization Mi

is related to the magnetic field Hi through the nonlinear char-
acteristic of the material that, in the following, is approximated by
the single-valued normal curve Mi ¼ gðjHijÞ � Hi=jHij ¼ gðHiÞ. Intro-
ducing this relation in Eq. (1) and taking into account Eq. (2) the
following system of nonlinear equations is obtained

g�1ðjMijÞ �Mi=jMij ¼ �∑
j
Nðri�rjÞMjþHsi; ð3Þ

where g�1ð�Þ is the inverse magnetic characteristic. The unknown
field Mi can be obtained by solving the nonlinear system (3). This
nonlinear problem can be effectively handled by means of the
Fixed Point (FP) technique [3]. By this method, the nonlinear
relation g�1ð�Þ is splitted into a linear part and a residual term

Hi ¼Mi=χFPþHresi; ð4Þ

where Hi and Mi are the magnetic field and the magnetization
at point ri respectively, the residual Hresi is a local nonlinear
function of the magnetic field Hi, and χFP is a constant whose value
is discussed in Section 3. By replacing Eqs. (2) and (4) in Eq. (1) we
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obtain

Mi=χFPþ∑
j
Nðri�rjÞMj ¼Hsi�Hresi ð5Þ

Eq. (3) results now splitted into the two equations (4) and (5),
whose simultaneous solution provides the unknown fields. The
advantages of this formulation are inherent in the possibility of
solving the two equations iteratively [3] as explained in the next
section.

3. Fast iterative technique

The iterative solution of Eqs. (4) and (5) can be achieved, in
principle, through the following algorithm (standard Fixed Point
technique). Known the residual field from iteration kth, the follow-
ing equation is obtained from Eq. (5):

Mkþ1
i =χFPþ∑

j
Nðri�rjÞMkþ1

j ¼Hsi�Hk
resi; ð6Þ

where Hk
resi is the (known) residual magnetic field at iteration kth

and Mkþ1
i is the (unknown) magnetization field. Afterwards, the

magnetic field is calculated through Eq. (4)

Hkþ1
i ¼Mkþ1

i =χFPþHk
resi: ð7Þ

Finally, the residual field is updated

Hkþ1
resi ¼Hkþ1

i �gðHkþ1
i Þ=χFP: ð8Þ

It is worth noting that the application of this algorithmmakes use of
the direct gð�Þ function between H and M.

This algorithm converges to the Fixed Point, i.e. the solution of
(4) and (5), starting fromwhatever residual field, on condition that
the constant χFP is suitably chosen. Following Ref. [3] its optimal
value is given by

χFP ¼ ðχminþχmaxÞ=2; ð9Þ

where χmin and χmax are the minimum and maximum slopes of the
magnetic characteristic gð�Þ respectively. In any case, χFP4χmax=2 is
needed to ensure convergence [3]. However, the solution of the
system (6) (at each FP iterative step) can became very time
consuming because the coefficient matrix is full. This problem can
be solved by the application of the iterative method proposed in Ref.
[4] for the case of linear constitutive relation. Hence, the iterative
Fixed Point algorithm and the iterative method of Ref. [4] can be
eventually combined as explained in the following.

Known the residual field from iteration kth, Eq. (6) is replaced,
according to Ref. [4], by

Mkþ1
i ¼Mk

i þα � ½Hsi�Hk
resi�ðMk

i =χFP�Hk
miÞ�; ð10Þ

where ith index refers to a rectangular block element, Mk
i is the

magnetization distribution at the kth iteration, Hk
mi is the magne-

tostatic field associated to magnetization Mk
i , and α is the relaxa-

tion parameter discussed in Ref. [4]. The magnetostatic field is
computed by the formula

Hk
mi ¼ �∑

j
Nðri�rjÞMk

j ; ð11Þ

where the convolution product of Eq. (11) can be computed very
fast by using the FFT algorithm, whose complexity is Oðn log nÞ.
The residual is then updated by using Eqs. (7) and (8).

The steps (10), (11), (7), and (8) are then repeated until the
error norm Ekþ1 ¼ ‖Hkþ1

res �Hk
res‖2 becomes sufficiently small. This

algorithm (fast FP) converges to the solution for any initial
condition (M0

i , H
0
resi) provided that the constant χFP is suitably

computed according to Eq. (9) and the relaxation coefficient is
chosen according to the analysis reported in Ref. [4]. The whole
iterative procedure is diagrammatically explained in Fig. 1.

Fig. 1. Block diagram of the Fast FP algorithm. It summarizes Eqs. (10), (11), (7), and
(8) that are repeated until the error norm Ekþ1 ¼ ‖Hkþ1

res �Hk
res‖2 becomes suffi-

ciently small. Note that, for the sake of simplicity, the subscript i is omitted.

Fig. 2. A 1250 kVA transformer is selected as a case study (a). The mitigation is provided by a metallic slab installed on the wall. The shield performance is evaluated along
the inspection line (b).
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